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                                                                         CLIPPING:   FRIEND OR FOE 

 

 

    The term “clipping” (sometimes “saturating” or “pegging”) means that a voltage, usually 

a signal, is blocked from taking on its proper value by some limit.   Often the limit is well-

understood and appreciated as unavoidable even though not what we might call a 

desirable “feature”.   The most familiar form is probably clipping of a signal against one or 

both power supply limits.  The signal is simply too large.  Instead we get that portion of 

the signal within the power supply limits, and the portion that is beyond the limits is 

replaced by the limit.  Fig. 1 shows a typical example where three sinusoidal components 

are added and portions of the sum exceed the limits (±14).  Here the ±14 limits are 

chosen as what might be expected with op-amps powered between ±15 supplies.    

                                                                 

     In the figure, the blue portions of the signal are faithfully retained, but the pink portions 

are clipped off.  Obviously this makes a difference.    It is true, and perhaps most obvious, 
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that the peak amplitudes are reduced.  ( Here this does not appear as terribly serious, but 

examples could easily be shown where amplitudes are greatly changed.  The large 

unclipped signal seems to be about ±24, and this is clipped at ±14.  But there are few 

actual peak regions here.   If the signal had been say ±50 clipped at ±14, the loss of 

amplitude would of course be much more dramatic. )  The second thing to note is that the 

clipping is going to introduce distortion, and the spectrum (originally just three sine waves, 

by information we have volunteered) will have many more frequency components due to 

the clipping.  It turns out that a broader-banded signal may have an apparent loudness 

that is noticeably, or even greatly in excess of that of a signal with a simpler spectrum, 

even for very similar amplitudes.  In consequence, the clipped signal may have an 

apparent loudness greater than that of the unclipped signal.   

 

Some Tests:  
 

Clipping Sinewave: 

 

     As a first example consider what is an easy experiment or likely a result easily 

retrieved from memory of just playing around with circuits.  Listen to a sine wave and turn 

up its amplitude until it clips.  Right at the point where it starts to clip you hear a sudden 

change.  This is a change in acoustic character, mainly the generation of harmonics, but 

perceived in part as an increase of overall loudness.  It is more likely to wake us up. 

 

 Comparing Waveforms: 

 

     A simpler experiment is just to take a music synthesizer and play out the waveforms.  

Comparing the sine wave to a square, sawtooth, or pulse, all of which are designed for 

the same amplitude, should convince you that the latter three are “louder” than the sine, 

at least in the sense that the sine is more “mellow” and the other three have more “bite”.   

The triangle wave, in comparison is much more similar to the sine.  Indeed, the harmonic 

content of the triangle is much less than the square, saw, or pulse.   

 

     Accordingly we recognize that a change to a richer spectral content can be conflated 

with a perceived change of loudness.  This is not an “error” but simply the way the ear-

brain works.   Sorry if this is troubling to engineers! 

 

Equalizing Power: 

 

     Above we thought of clipping from the viewpoint of amplitude.  (We noted intentional 

design achieving the same amplitudes for various synthesizer waveshapes.)    Instead of 

amplitudes, can we compare waveforms of the same power?  Yes, but we need to be a      
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little careful.   It is clear enough what the power in a sinewave is.  We have only to 

integrate the sine squared over a full cycle, and divide by the cycle length: 

 

                   
 

  
             
  

 
                                                                                 (1) 

 

which is the well-known result.  Thus the RMS (root of the mean squared) voltage for a 

sine wave is 
 

  
 .   Now we consider the ordinary pulse, as it might be obtained by clipping, 

such that it is some high level (say α) for the first part of a cycle and then abruptly 

changes to a low level of the opposite sign (thus to –α) for the remainder of the cycle.  

Thus the magnitude of the pulse is always α and the power is obtained by integrating α2 

over a full cycle, say of length T, thus: 
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where we have set α=1 so that the pulse has amplitude = 1 the same as the sine.  This is 

essentially what we have with a music synthesizer where all waveforms have the same 

amplitude, and typically the signals range between ±5.  So we come to the conclusion, 

comparing equations (1) and (2), that the sine has half the power of the pulse.  So of 

course it sounds louder – you might say.  But we do need to be careful here. 

 

The Fourier Series View: 

 

     The sinewave is taken to have zero mean (zero DC component) while the pulse most 

assuredly does not (except for the particular case of the pulse known as a square wave).  

You can’t hear the DC component.   So how do we allow for that?  Let’s choose a specific 

example: a pulse of “duty cycle” 1/5, which is high for 1/5 of a cycle and low for the 

remaining 4/5, and assume the levels of the pulse are ±1.    This has a DC value of -0.6 

(1/5-1/5-1/5-1/5-1/5), and the fundamental amplitude is 0.74839 (using a standard Fourier 

Series approach).    The value of 0.74839 for the fundamental may seem large, but after 

all, when the duty cycle becomes 1/2 (a square wave), the fundamental exceeds 1 

(becoming 4/π = 1.2732).  Fig. 2 shows the Fourier Series reconstruction (blue curve) 

using 25 components with the coefficients printed to the right of the figure, and we see 

this is approximating the pulse of 1/5 duty cycle (keep in mind the periodicity).  Here we 

include the DC term of -0.6.    Here we also show the ordinary unit amplitude sine wave 

(red).   The real point is perhaps that we also plot (dashed blue) the first sinusoidal term 

of the Fourier Series of the pulse.  As mentioned, its amplitude is 0.74839, below 1, but 

not that small either.    So when we listen to the pulse, we are listening to the red curve, 

attenuated to 0.74839, PLUS all the harmonics, and this sum sounds louder. 
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a(0)   =  -0.6 

a(1)   =   0.7484 

a(2)   =   0.6055    

a(3)   =   0.4036   

a(4)   =   0.1871     

a(5)   =   0.0000   

a(6)   =  -0.1247  

a(7)   =  -0.1730 

a(8)   =  -0.1514 

a(9)   =  -0.0832  

a(10) =   0.0000    

a(11) =   0.0680   

a(12) =   0.1009   

         …………. 

 

 

 

 

Equalizing the Power and Removing the DC: 

 

     As we said, the pulse confined between two limits (such as we would get with clipping 

and as produced by most music synthesizers) has a DC bias, except for the exact square 

wave.  Suppose, for purposes of calculation, that we decide to name a high level of A for 

the pulse and a low level of B.   We then want to choose A and B to meet two conditions 

(two equations in two unknowns after all).  The first condition is that the pulse has no DC 

component.   The second is that the power in the pulse is the same as that of a unity 

amplitude sine wave (i.e., 1/2).  This is easy to solve.  First, to get a DC level of 0 we 

need to have: 

 

               
 

 
 

  

 
                                                                          (3a) 

 

That is, for 1/5 of the cycle the voltage is A, and for 4/5 it is B.   This solves to: 

  

                                                                                                                         (3b) 
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The condition on the power is that: 
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                                                                       (4c) 

 

                               (choosing the negative root)                                                  (5a) 

 

                                                                                                                         (5b) 

 

[Note that we didn’t really need the integrals of (4a) and (4b) since we just have 

rectangles, and could use the areas directly (4c).]   In either case, (5a) and (5b) are the 

answers. This is drawn in Fig. 3 
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     In Fig. 3 we have adjusted the phase, relative to Fig. 2 for a slightly different view.  

Note that we have chosen for both figures to plot a sinusoidal waveform of amplitude 1.  

The pulse in Fig. 3 has an amplitude of 5   /4 = 1.7678 and is thus smaller than the 

pulse in Fig. 2, which has amplitude of 2.  Accordingly, the pulse that gives the same 

power as that of the sine wave is smaller than the full-amplitude pulse, and would be less 

loud.  None the less, subjectively it may be louder, or have more “bite”.   We should note 

that the fundamental of the pulse in Fig. 3 (an attenuation of the red curve – not shown)  

is of course smaller than that of Fig. 2.  Its amplitude should be 1.7678 x 0.74839 = 

1.3230 which would be 0.6615 times the amplitude of the sine wave.  A Fourier Series 

analysis should confirm this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Here it is quite convenient to use an FFT rather than a Fourier Series, which we 

expect to give almost the same result.   We will use a discrete 25 point version of the 

pulse, and of the sinewave of Fig. 3, and look at the magnitudes of the first 13 points of 

the FFTs, as shown in Fig. 4.  The spectrum of the sine is just the single spike at k=1 of 

the FFT, and the magnitude is 12.5 (also same at k=25 not shown).  The pulse has the 

periodic sinc structure evidenced by the blue stars of Fig. 4 (compare also to data at right 

of Fig. 2).  Further, as is expected for a pulse of 1/5 duty cycle, every 5th harmonic is 

missing.   Note that both spectra are 0 at k=0, verifying that we have no DC.  The key 

result to see if we have correctly reasoned through all this is the ratio at k=1 which is 

8.2905/12.5 =0.66324, nearly the same as 0.6615 obtained above.  So it worked. 
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Back to the Clipped Signal: 

 

         We have taken a detailed side trip to examine a simple sinewave and a simple 

pulse.   However, we started with a more or less arbitrary combination of three sinewaves 

in Fig. 1.  We have now come to expect to find additional frequency components as the 

result of clipping.  Further, we expect additional frequency components will likely give a 

subjective impression of a “louder” signal.   So here, what does the FFT of the signals 

(clipped and unclipped) of Fig. 1 look like?  This is shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The unclipped signal in Fig. 1 is basically three sinusoidal components, and these are 

seen as the three larger valued red stars, with the remainder of the red stars around zero 

representing the lack of additional components.   By clipping, we are removing portions of 

the signal.   This has two effects.  Note first that the frequencies represented by the three 

main red stars are still there as blue dots somewhat below the red stars.  This is what is 

retained.  The major change is the cluster of blue dots somewhat above the horizontal 

axis replacing the red stars that are virtually on the axis.   In this sense, this cluster is the 

clipped portion.   It is broadbanded material.  We might well call it distortion.   
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Designing Within Limits: 

 

     In describing clipping as “Friend or Foe” in the title of this AN, I am suggesting a 

design within realistic limits.   If we were designing a garage for a vehicle, we would 

recognize that the abode had the purpose of housing the vehicle safely within limits, but 

for the most part, also making use of available resources.   Most garages (sadly) are not 

that much more capacious than is necessary for the primary function.  In the case of the 

design of circuits to handle signals, this is part of the S/N (Signal-to-Noise) consideration.    

 

     It is a joke among electrical engineers that one way to improves S/N, in lieu of getting 

down to a more difficult approach of reducing noise, is to increases the signal.  This 

means in general, to make the amplitude levels as near to what the system supply 

voltages (and sometimes, the speed capabilities of active components) will allow, at as 

many points within the circuitry as possible.   If you have supplies of ±15 volts, you should 

perhaps try to have signals of levels ±10.   If your supplies are ±12, you may well settle 

for ±5 signals.   Why not supplies of ±300 volts?  Your signals then might well be ±250.    

 

     Indeed, why not.   Well it will come as a surprise to some reading this that voltage 

levels of 300 volts (600 volts differential) can give you quite a jolt.  (Many old-timers will 

even be cautious to place fingers across the full 30 volts of a ±15 system.)   Old tube 

circuits typically had several power supplies, including one called the “B+” supply which 

could be as little as 90 volts or as much as 450 volts, or so.   This was the “plate” supply, 

originally supplied by what was by tradition called the “B Battery”.   (The A Battery was 

something like 6 or 12 volts, which heated the filaments or heaters.)   To complete this 

reminiscence, I recall radio repairmen in the army who were comfortable using a “wet 

finger” (literally) to trace the B+ voltages.  Much faster than using a meter.   (A “wet finger” 

repairman was consequentially a traditional term for someone who repaired on instinct, 

and the term thus used was not related at all to testing the direction of a prevailing wind.)   

It was apparently possible to develop immunity!  The worst I ever injured myself with 

electronics was when I accidently touched B+.  I was not injured by the shock itself, but 

my hand jerked away fast and ran into the sharp edge of a metal chassis box.    

 

     Tube electronics needed the high voltages, but semiconductors do not need it or 

“want” it.  Happy days!   But we still try to use most of whatever supply range we choose 

for S/N reasons.   So while clipping is always a possibility, and can usually be anticipated, 

it is a foe, at first blush.  However, if we are using signals that are pushing the limits, 

clipping can be seen as a friend; as any accidental increase will soon be automatically 

limited.   Your sound system, for example, can’t jump up too loud if you are normally 

operating relatively close to clipping.   As suggested above, the signal may face distortion, 

but it may be possible to assure that the signals can’t get too big. 

                                                         

                                                                AN-397 (8) 



Considerations For Audio: 

 

     So clipping of signals within the confines of power supply limits provides some 

assurance in the same sense that knowing your car is in the garage assures you of its 

whereabouts.  We can also ask, within a specific area of application, if clipping is useful or 

at least interesting.   In particular, we find interesting examples in music and audio. 

 

     Most obviously, the musical traditions in popular music, particularly electronic guitar 

“effects”, show a wide variety of clipping-related and other non-linear processes which 

provide a richer, or at least more musically marketable sound.  Here one has to begin with 

the acceptance of the fact that something that looks like an engineering disaster produces 

something that practitioners find musically valid.   This is not really that unusual a 

phenomena when engineering is actually applied.  So there are numerous effects devices 

such as “fuzz boxes” (essentially intentional clipping) that enjoy widespread use. 

 

     Perhaps in a related case we find examples or at least claims that some sort of mild 

non-linearity enriches either live sounds or synthesized sounds.   Those who prefer “tube 

power amplifiers” often claim such subtle effects, and attempt (usually unsuccessfully) to 

characterize the effect by terms (words only) such as “warm”.    

 

     In musical synthesizers we have a special case where the instruments are designed 

by electrical engineers (degreed or not) who are heavily schooled in linear circuits and 

notions that a circuit should perform as designed and inside limitations known to them.  

But not always do engineering specifications tell the whole story.  One example is the 

Moog Four-Pole-ladder voltage-controlled filter, often said to have some almost mystical 

preferred sound which some attribute to the non-linearities of the control device (the 

dynamic resistance of the base/emitter terminals of the controlling transistors).  Another is 

the reported failure of a new version of a famous commercial phasing effects device when 

the voltage-controlled resistors (formed from FETs - with non-linear properties) were 

replaced by much more linear OTA’s.   In my own experience, in testing a VCF with 

voltage-controlled Q, I was delighted to hear a very good result, but disappointed to see 

on the scope that it was the result of clipping.   Backing off the amplitude to prevent the 

clipping, I could not get anything approaching the preferred sound. 

                                                                 

      Above we have tried to present a basis for understanding the results of clipping as 

encountered naturally and as intentionally used for effects.   One particular finding is the 

fact that the added harmonics caused by clipping can result in an apparent increase in 

loudness (despite being amplitude limited by clipping).    Certainly we understand that 

this, in conjunction with any actual jump to self-oscillation of a filter (with its accompanying 

“ugly” waveshapes), can result in an annoying aural outcome overall. 
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