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INTRODUCTION   

 

     It is usually easy enough to design a fixed active filter.   That is, as long as the 

parameters of the filter (usually cutoff frequency, damping, and gain) need not be 

variable, we envision few problems.  If it is the case that the actual filter we build does not 

approximate the desired response closely enough, we usually can “tweak” it to adjust for 

tolerances of the passive components and/or bandwidth limitations of any active 

components [1].    

 

     Problems can arise when we need a tunable filter.   Typically it is the cutoff frequency 

that we need to adjust.  If the filter is of low order (such as 2) we only need a dual pot to 

do this.   As long as the frequency range needed is fairly low (say under 50 kHz) we 

expect success.  If asked to design a 2nd-order Butterworth with a cutoff that varies 

between 200 Hz and 20 kHz, we might well take out a sheet of paper and draw the circuit 

on the spot.    

 

     If we were asked to change the gain or the damping however, we would be forced in 

general to consider certain trade-offs.  Not that we can’t get what we want, but these two 

parameters will likely interact.   Often a higher Q (lower damping) means that the gain 

increases.  If we were looking for a fixed peak gain, we would need an attenuation. 

 

 

WHAT IS THE DC GAIN AND WHAT IS THE PEAK GAIN? 

 

     Here we concentrate on a 2nd-order filter section, and assume a normalized pole 

radius of 1.   This should sufficiently illustrate the problems and potential solutions.  

Accordingly a 2nd-order low-pass transfer function would be simply: 

 

                          
 

        
                                                               (1) 

 

Here D is the “damping” or the inverse of “Q”.   It is trivial to see that the DC gain of this 

section is 1.  All we need to do is substitute s=0 into equation (1).   That’s the easy part of 

course. 
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     Let’s jump ahead and look at some example frequency responses (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where did all this come from?  First of all, Fig. 1 shows two filters (solid blue) one for a Q 

of 1/   =0.7071, a “Butterworth” response, and the other for a Q of 2.5, which shows 

resonance.  The actual plots were generated with the Matlab freqs function   Lacking this, 

it is always true that the magnitude of the frequency response of T(s) is: 

 

                                             1/2                                                                                    (2) 

 

which we can calculate and solve for ω=0 to 4 here.    We have also plotted the Q=2.5 

result divided by Q (the dashed blue line) for comparison – note that this peaks close to 1.  

The gain of the Butterworth at ω=1 is 0.7071 or almost exactly -3db.  At ω=1 note that the 

gain of the Q=2.5 is NOT the peak (but close to it) and the peak gain is not Q (but close to 

it).  If we wanted the more resonate low-pass (Q=2.5) to have a peak near 1, it is 

necessary that the DC gain is reduced (dashed blue). 

 

     What is at issue here is illustrated by the difference between the solid blue curve and 

the dashed blue curve for Q=2.5.  Why would we care much – they are just scaled 

versions of each other?  Well, first of all, the gain near the cutoff frequency might mean 

that a signal at that frequency, input with high gain, could well clip against the power 

supply limits.  Alternatively, frequencies below this frequency are going to be attenuated.   
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    Consider a broadbanded signal at the input.  For example, it might be a narrow pulse 

with a frequency 0.1, so there would be a whole bunch of harmonics like 0.1, 0.2, 0.3, and 

so on, of which we would expect a Butterworth low-pass to substantially pass the first 10 

or so, and tend to reject those above.   The low-pass with a Q of 2.5, solid blue, would 

treat the signal much the same, except perhaps the harmonics at say from 0.8 to 1.2, 

which would be amplified (with the possibility of clipping as mentioned).   The dashed 

curve with the same frequency response would be less loud overall.  But the issue is 

complicated as upper harmonics can have a much stronger effect on the impression of 

loudness than the lower ones.   For example, a sinewave at a certain amplitude might 

sound relatively soft, but if we make it instead a square wave at the same amplitude, it 

can sound many time louder, subjectively.   For similar reasons, when using a VCF for 

music synthesis,  a change of Q that results in a gain increase might result in some 

clipping as well, and this adds to the perceived spectral modifications, often in a musically 

valid way, but to the embarrassment of the engineer!  

 

     Keep in mind that the use of low-pass sections with Q’s much greater than 

Butterworth, or much less than Butterworth for that matter, are mainly to allow the 

construction of higher-order, but still relatively flat overall responses [2].  In our music 

synthesis work, however, we have a lot of use for sharper filters with moving 

characteristics in creating dynamically varying spectra for our sounds. 

 

     Above we noted that for the case of Q=2.5 that the peak was close to a frequency of 1, 

and that the peak amplitude was close to Q.   If Q is as high as, say 10, then this is a 

virtual identity.  The exact frequency of the peak and the exact amplitude of the peak will 

be calculated below in an appendix.  But right here note that if we accept that the peak is 

close to a frequency of 1 (that is, s=j), it is clear from just equation (1) that the magnitude 

is Q, since:        
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So the magnitude at a frequency 1 is always Q, and for large Q, this is also the peak 

magnitude.    

                                            

     So the finding is that for most values of Q that result in significant peaking, the peak is 

of magnitude approximately equal to Q, and that correcting this peak gain back to 1 is a 

matter of multiplying by D = 1/Q.   That is, as in going from the solid blue curve for Q=2.5 

in Fig. 1 to the dashed blue curve.  It turns out that with the familiar state-variable filter, 

this can offer us a convenient alternative input point where the peak gain remains 1 for a 

varying Q.  The idea is not new. 

 

                                                               AN-396 (3) 



  THE STATE-VARIABLE WITH A “LIMIT” INPUT 

 

     Fig. 2 shows the modified state-variable.  We have simply added the lower summer as 

an alternative place to put the input.  Because the lower summer cascades into the 

normal upper one, this is the same thing, except note that the output of the lower summer 

is fed through a multiplier –D.   This is what we need to set the Q of the filter, but at the 

same time, conveniently, the input is also multiplied by the exact same D, achieving the 

attenuation we were looking for.                                                

           As stated, the idea is not new.  Unfortunately I am not that clear on exactly where it 

came from.  As an explicit design feature, it appeared in 1976 in one of our VCF options 

for the ENS-76 series [3], in EN#71, and is also described in another article [4] in the 

same EN#71.   This in turn leads back, as many of our best ideas have, to Terry Mikulic’s 

work [5] in January of 1974.  It also appeared in a somewhat later app note in 1979 [6].  It 

may appear in some of the earliest state-variable literature.  What was slightly different in 

the music synthesis examples was the ease with which we could add this once we had 

decided to use a voltage-controlled Q.  Essentially it was just a single resistor (or two) to 

an input terminal of the OTA used for the controlled Q (Fig. 3) 
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APPENDIX  –  MORE  EXACT  CALCULATIONS 

 

     Although the simplified calculations discussed above are probably adequate for many 

purposes, here we will do the exact calculations, which have been published in our app 

notes series long ago [7,8].   We begin with equation (1) above.  Completing the 

calculation suggested by equation (2), but leaving it in a squared-magnitude form, we 

have: 

 

                                           
 

                
                                                   (4) 

 

To find the maximum of |T(s)| it is convenient to minimize the denominator of equation (4) 

and we can call this denominator P(ω): 

 

                                                                                                                    (5) 

 

and then 

 

              
     

  
                                                                                             (6) 

 

gives us (in addition to ω=0): 

 

                           =                                                                                                    (7) 

 

Using equation 4 (taking the square root for |T(s)|) and plugging in ωmax we arrive at the 

peak value of the response as: 

 

                             
 

 
  

 

                                                                               (8) 

 

If we have not made any math errors, the results of equations (7) and (8) are correct.  We 

note first of all that equation (7) gives a real result only when D<  .  That is, only when 

the Q exceeds 1/    (Q greater than Butterworth) - where there a peaking.  For higher 

dampings, the roll-off of the low-pass is monotonic from 0.  In the other direction, when D 

becomes small, ωmax approaches 1, and |T(s)|max in equation (8) approaches 1/D = Q, 

agreeing with equation (3).   So, for the region we are most interested, everything looks 

good.   Note that equation (8) gives a real result only as long as D is less than 2.  The 

condition on equation (7) that D<  . certainly meets the condition D<2.  But what’s going 

on here: why two conditions on D? 
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       Here is the situation for the interested reader.  Equation (6) is third order.  This 

equation is to be solved for relative max/min values of ω.   One root is clearly ω=0.  This 

corresponds to the minimum or maximum at ω=0 or course.   In the cases where there is 

no peaking (monotonic decrease) ω=0 is a maximum.   This is true for all cases where 

damping is greater than Butterworth ( D>    ).   In the case for damping less than 

Butterworth (D<  ), there is a relative minimum at ω=0, and the quadratic remains of 

equation (6) gives us the real results (negative as well as positive frequency) of equation 

(7).   Note that with the damping greater than Butterworth, ( D>   ), equation (7) gave us 

imaginary frequencies as the “other” two solutions to equation (6).   So the case where 

equation (7) gives a real result is really retelling the occurrence of the beginning of 

peaking in the frequency response – going beyond Butterworth to Chebyshev responses.   

 

     Now for equation (8).   Ouch!   This equation is telling us to watch out for the cases 

where D goes to 2 and beyond.  If D=2, equation (8) blows up.  If D>2, then the result is 

imaginary.    [Note that when D=   , the Butterworth case, well short of D=2, equation (8) 

gives |T(s)|max = 1.  Remember that right at D=    we have the last legitimate case to use 

equation (8).   Beyond this, as D exceeds    , ωmax becomes imaginary, and |T(s)|max 

goes back up above 1, a bogus result.]   Thus equation (8) fails not where it blows up or 

becomes imaginary (although it would do so) but where equation (7) becomes imaginary.   

 

     We note that the case of D=2 is a significant value in terms of the network.  For 

dampings of D<2, the poles of the network become imaginary.   This is what we want.   

The poles for D=2 are a pair of two real poles at s = -1.  For smaller dampings, the 

complex conjugate poles move on a circle or radius 1 in the s-plane, arriving at ±j when D 

goes to 0 (infinite Q).   One significance of the complex poles is that we need these for 

any sort of reasonable filtering.   Indeed, 2nd-order Butterworth consists of  a complex pair 

at  -    / 2  ± j     / 2.   A second significance is that the time response shows overshoot 

starting at D=2 and increases as D gets smaller. 

 

     To summarize, equations (7) and (8) are limited to values of D =      and smaller, and 

these were the cases we were interested in anyway.  Also, keep in mind that time 

overshoot begins as D gets smaller than 2, and “corner peaking” begins as D gets smaller 

than     .  See Fig. 4 for summary. 

 

   To actually verify (not prove) our results, we can do some calculations.   This is 

conveniently done with Matlab, and the code that we used to test the equations (for 

various arbitrary choices of Q) is printed at the end.  The code is the best documentation 

of the calculations.  [If there is ever a doubt about interpreting a written equation, the code 

is usually unambiguous.]   Similar code produced Fig. 1.   The results agree to four 

decimal places.                                        
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Typical Matlab Code Used in Calculations 

 

% an396Ver 

  

Q=2.5 

 

w=0.9:.0001:1.1; 

T=freqs(1,[1 1/Q 1],w); 

  

figure(1) 

plot(w,abs(T)) 

hold on 

plot([-1 5],[Q Q],'r:') 

plot([1 1],[-1 20],'r:') 

plot([0 0],[-1 50],'k') 

plot([-1 5],[0 0],'k') 

axis([0.9 1.1 .8  1.1*Q]) 

hold off 

figure(1) 

 

% examine calculated data 

[M,ix]=max(abs(T)); 

fmax=0.9+(ix-1)*.0001 

M 

 

% equations (7) and (8) 

D=1/Q; 

fmaxth=sqrt(1-D^2/2) 

Mtheory=(2/D)*sqrt(1/(4-D^2)) 
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