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                                                 AVERAGING  - AND ENDPOINT GARBAGE 

                                                     

PROLOG: 

Longtime analog synthesizer designers and builders are accustomed to viewing 

waveforms on a scope and seeing, and ignoring, features of the trace which we know are 

not the main story.  For example, if Fig. 0 were a scope trace, we might note as follows: 

 

 

Well - it looks like a sinewave but I also see some sharp glitches, and I knew I should 

have added additional power supply bypass capacitors on that 555 timer – I will get to 

that.  And, when the sinewave ended, something rang (perhaps just the scope) as the 

signal turned off.   But we likely don’t  looked at this as something we designed or wanted.  

It is a multiplicity of things, some of which just came along for free. 
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     We look at signals in terms of what may have produced them, and here we not only 

know what we intended and what was unintended, but more importantly, sharp glitches 

and transient features are not produced by the same (basically low-pass) system as the 

one we are implementing.   Physical systems we build, mechanical systems such as 

acoustic musical instruments, and the world itself tends to be low-frequency (smooth) until 

provoked by sharp input feature.   

    It is not as though we are surprised by much – the appearance of something 

unexpected (superimposed) is seldom a surprise in engineering.   And most of the time, 

we no sooner see the unexpected than we know the cause, and often what if anything to 

do about it. Not that we don’t love a good mystery as much as everyone else. 

 

INTRODUCTION 

Engineers tend to view any data presented in terms of how the numbers represented by 

the data might have been the result of something they are already familiar with.  While it 

is true enough that someone could have just typed in whatever they pleased, lots of data 

series often do look familiar.   The count of cookies in a cookie jar vs. time might look like 

the exponential decay of an RC circuit.  When the jar is full, we take a handful.  But when 

it is low, who wants to take a large fraction of those that remain?  The two phenomenon, 

physically unrelated most likely, resemble each other.    

     Another example is when we see in a data sequence sharp features among smooth 

ones.  That is, high frequency events, inside what otherwise seems to be low-pass 

processes (sharp spikes in smooth curves), are prima facie at least suspect.   Further, 

engineers seeing strange happenings at the ends of data sequences always wonder if we 

are just seeing end transients. 

     There are many well-studied methods of extracting fundamental properties of a time 

series, such as DFT analysis, Prony’s method, and principal components, to literally just 

name a few.   Sometimes this is done as a matter of analysis: we want to identify 

parameters that describe a series (such as frequencies).   At other times, we have as a 

first goal just getting a better “look” at the signal as it is represented by multiple, noisy 

observations.    

     Here we have in mind something like the identification of a time series representing 

historic global temperature (somewhat of a fictional entity in the first place) from proxy 

data.    Possibly the first thing that comes to mind is simple averaging.  Here we want to 

look at what problems can come up if we are not careful, and will use a stand-in “toy” for 

actual data.  There is no real climate data used here.                            
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EXPERIMENT 1 :  HOLES IN DATA EFFECTING ORDINARY AVERAGE:    

      Let’s start with what we will take to be a length 13 time series that is exactly: 

                  [ 0  1  2  3  4  3  2  1  0  1  2  3  4 ] 

However we pretend that we don’t “know” this but only have some samples of these that 

are noisy.   In particular, we have samples that are subject to random errors with a 

uniform distribution between -1 and +1.   [ In Matlab code, the added error is represented 

by 2*(rand-0.5).]   We will also want to consider what happens when some samples are 

actually “missing”.    

                                                           

     Fig. 1 shows the 13 samples as black dots.  The solid connecting line is just there for a 

better indication of the form here.   The 8 colored curves are the noisy data sequences 

generated randomly.   Here we are again just showing the connecting curves for better 

clarity.   Fig. 1 contains only 13 original samples and (8 x 13 = 104) random samples.   As 

we naturally would try with noisy data, we can average the eight noisy sequences, and 

this is shown by the blue dots in Fig. 2.  Again we have connected the blue dots with a 

continuous line for clarity.  We compare the continuous blue line with the continuous black 

line.   We see that averaging has done a credible job of identifying the actual signal. 
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      Next we consider the case where a fair number of the time series are incomplete.  

That is, for some elements of the series the data point is missing.   It seems natural for us 

to represent missing samples with the number zero, but this is wrong as we remind the 

reader below.   Our habit of putting in zeros perhaps comes from the correct notion of 

“zero-padding” a sequence prior to interpolation with an FIR filtering procedure.  Here we 

will represent out failures to have a proper sample with the number zero in a “mask”. The 

number 1 represents a proper sampling instance.  Our first mask is shown below: 
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     Mask 1 is a matrix (used for convenience) that is 8 rows by 13 columns, eight “signals” 

of length 13.   Full sampling would be a 8 by 13 matrix of all ones.  Here some samplings 

end to soon, start too late, or have a lower sampling rate or bunching of samples, as 

shown.   In our experiments here, we will be multiplying the mask matrix by the data 

matrix (as plotted in Fig. 1).  This will mean that samples that were not taken will be 

replaced by zeros.  This is wrong in fact!   However, here we can (for purposes of 

programming) use the fact that a result is zero to determine that the sample was skipped.  

This is because the possibility that an original sample is (exactly) zero is vanishingly small 

because it has a random number of many decimal places added to it.  So what happens 

in this case? 

    We see in Fig. 3 that the 13 blue dots do not approximate the black curve well at all – 

generally being too small.   Note in particular that points 6 and 12 are way too low.  Points 

7, 8, and 10 are not so bad.   We do note that points 1 and 9 are not bad, but they are 

approximating zero anyway.   So what is the difference.  Consider the number of actual  

samples for points 6 and 12.  The columns of Mask 1 sum to just 4 and 2, respectively, for 

these two points.   The columns for points 7, 8, and 10 sum to 8, 6, and 6 respectively – 

higher numbers of actual samples. Note that the result for sample 7 is the same for both 

Fig. 2 and Fig. 3 (column 7 of Mask 1 is all ones).   All of this is no surprise.  For Fig. 2 

and Fig. 3 we are finding the averages by summing and dividing by 8.  If we have fewer 

than 8 actual samples at a particular position in the time series, we should divide not by 8, 

but by the actual number of actual samples at that position.    
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     When we do divide by the right number of samples, we get Fig. 4, which is clearly a 

great improvement over Fig. 3, and is not all that different (at least in this  example), from 

Fig. 2, even though we have only 68 instead of 104 actual samples.    
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     Time series as irregular as those suggested by Mask 1 might seem unlikely.  Possibly 

such situations occur when we try to reconciles a number of highly disparate 

measurements, such as temperature proxies.  In such cases, we expect irregular 

endpoints times, drop-outs, interpolated (in-filled) points, and general disorder.  Perhaps 

more typically we have time series that are simply of different lengths, perhaps of lengths 

differing by one or just a few samples.  For example, smoothed sequences (produced by 

convolution typically) will lengthen sequences, and have end effects (transients).  Here 

we will look at what happens with Mask 2.  Our main objective was to shorten the last five 

sequences by one sample.  At the same time, we could examine the effects of an earlier 

sample missing (such as an unconformity).  Thus Mask 2 removes the 4th  and 13th 

samples of the last five (of eight total) sequences.  Fig. 5 shows the result where we get 

in the average, at time positions 4 and 13, values that  are low because we have divided 

by 8 instead of by 3.   Fig 6 shows the result of doing the same calculation while dividing 

by 3 in these two cases. 

 

 

The program av.m at the end gives the code used for these six above figures. 
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EXPERIMENT 2:   AN EXTRA ENDPOINT 

Consider the case where a low-frequency event is represented by many similar instances 

where the parameters of each instance may vary over a range.   In particular, we envision 

a single broad event as represented by a single cycle of a cosine (a bump).   We allow 

that the actual frequency, phase, amplitude, and “dc offset” may vary a bit.   So we are 

not adding random noise to a target signal, as we did above, but jiggling four parameters 

randomly, while holding the parameters constant for any one signal. Fig. 7 shows such a 

collection of 20 such signals.   The “prototype” cosine  is shown as the light blue line in 

Fig. 9.  

     The results here are from the initial run of a program mar.m.   Other runs are similar 

but not identical of course.  Each of the 20 signals has a central bump.  The amplitudes 

vary about a value of 1 by ±25%.  The frequencies vary about a value of 1/20 by ±20% 

(time ranges from -10 to +10).  The initial phase shifts by ±10% of π.  The constant offset 

varies by ±5.  The 20 examples plotted are a modest representation. Note for example 

(by chance) the bottom two, one which is clearly a bit low in frequency (less than a full 

cycle) and the other a bit high in frequency (more than a full cycle. 
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     We are going to average these in an attempt to retrieve some essence,   So while not 

essential, here we do show in Fig. 8 the same 20 signals with their means set to zero.  

Our purpose in the original offsets were to make it look more like global temperatures 

series taken at different latitudes.   The “bump” here is basically thought of as a simple 

model for the Holocene (current interglacial going back 10,000 years).   Accordingly, Fig. 

8 is something like a plot of temperature anomalies over that time.  Of course, the data 

would be derived from proxies, not thermometers.  Again, we emphasize there is no 

actual climate data here.   By definition of our coded formulas, the data is relatively 

symmetric about zero where there is a maximum.   The slight asymmetry is due to our 

random starting phase.  The ends are roughly an equal mix of curves going up and cures 

going down, as is evident in Fig. 2.   So what happens when we average? 

 

     Fig. 9 shows the results.   As mentioned, the light blue continuous curve can be 

thought of as the correct answer.   All 20 of the time series are length 21 samples.  We 

see, much as we did in the first experiment, that averaging works quite well.    The actual 

average is represented by the dark blue stars.                                                                

     There are no real surprises here.   But the actual experiment we want to do here is a 

modification – what happens if we remove the end point (at +10) for some of the 

sequences.  Here we are going to remove the end point from the last five sequences (any  
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five would do).  We then do the same averaging, and the results are the red dots, which 

are identical to the blue stars at every point except +10, where the average jumps upward 

toward the mean of 0.  This is just what we expect.   If we instead do things right, we 

obtain the average on the last point (at +10) by dividing by 15 instead of by 20, and this is 

shown by the green dot at time +10, instead of the red dot.   The green dot is a much 

better estimate of the true situation, but not exactly the same as the blue star, because 

we did, after all, throw out five of the twenty samples at time +10.   (Not untypically, on 

additional runs, the green dot is a near-perfect overlap of the blue star.)   Additional runs 

are similar, and the red dot always jumps up at the end.   After all, this is the result of an 

error which we characterize as a blunder.         

  

 

MOVING AVERAGES    – THEY MOVE (In Time) ,  

                          AND CAN THE FILTER BECOME SHORTER? 

 

Simple averages are not the same thing at all as “moving averages”.   An average is a 

single number, like the average of a student’s test scores being 81 as a result of scoring 

70, 90, 86, and 78 on four exams.  But wait.  Above we had averages that were not single 

numbers, but time series of numbers.  None the less they were at each time point a single 

number, with averages for each time point computed in parallel.    

     A moving average is a traditional FIR digital filter.  The weights of the impulse 

response are typically all the same (some sort of “window” may be used, but that it 

technically different of course). The average is not of samples from different signals at the 

same time point, but of a range of samples of the same signal at different time points.   

Thus it is inherently an average over time rather than an average over different 

measurements.   After one such average is computed, typically we move along one time 

interval and find a new average, with each point constituting an element of an output time 

series. 

    Like all filters, we can and should worry about end transients as well as a steady state 

response.  We showed above ways in which end effects could occur as the result of 

actual errors (blunders in fact) computing the ordinary averages at the end (or at other 

points as well).   It may seem unlikely that one would makes such blunders.   When 

dealing with moving averages however, it is possible to actually divide by the wrong 

number of points because  we run off the end and the number of points added decreases 

from the full length of the filter down to one and eventually to zero.   
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     What happens in this case.   If we do continue to divide by the full length, the ends 

taper down.  That is, our simple notion of having end points missing is more subtle – the 

ends are discounted gradually.   On the other hand, if we correct for this by dividing by the 

actual number of samples, the moving average length still gets shorter, and the 

bandwidth increases accordingly (and dynamically, making the interpretation difficult).   

High frequency events which were previously being low-passed out (in the middle) are 

now being passed through.   What to do?  There is no answer.  We are basically up 

against the uncertainty principle!  In attempting to define a particular time (the end of the 

sequence) we are not allowed to also know the energy there (the value).  

      

     Fig. 10 shows the absolutely typical operation of a moving average.  Here the signal 

being averaged is represented by a sequence of all ones, of which nine are shown.  We 

assume this may be continued for a longer period of time on the left, but the right side is 

the end of the sequence that is available.   It may well be the case that the signal also 

does continue as a sequence of ones on the right, perhaps viewed as future.  This is just 

all we have, and we want to see the output of the moving average filter at the end.  The 

impulse response of the length-three moving average FIR filter is [1/3 1/3 1/3].  When we 

apply this filter to the middle of the sequence, we get 1/3+1/3+1/3 = 1, the proper 

average. 
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     It also seems clear that the last three values may not be what we intend.  That is, 

perhaps the averages should remain at 1.  It is easy for us to achieve these values by 

making the moving average time-variant, as in Fig. 11. 

     What we have done here is exactly what we suggested above of computing the 

average based on the actual number of valid data entries.   We are assuming that we 

have good data to the very end.   Thus by dividing by three in the middle cases, and then 

by 2 when we have only two points left, and eventually by 1 when here is only one point, 

we maintain the “correct” average to the end of the currently available data.  This is not 

hard to program, but it is not a time-invariant filter (the tap weight change) and is not an 

ordinary convolution.  On the positive side, it is probably exactly right, or the closest we 

can come to defeating the uncertainty principle. 

     As suggested, it is quite likely silly to try to average something that we postulated is a 

constant.   So we might make an excuse that the data sequence might represent 

something like a slightly noisy temperature record.   Or perhaps, the moving average is 

an attempt to “infill” (interpolate) missing data.  In either case, since recent global 

temperature trends are of great interest, and since recent data records must terminate, by 

definition, with the present, we should be very conscious that end effects may be 

misleading.                    
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      Above we chose a length-three moving average as a matter of the smallest possible 

size that illustrated the points we wanted to show.   A length 4 or length 20 might have 

been chosen.   Often a specific length moving average is chosen specifically for its 

frequency domain consequences.   A length N moving average has a zero in its 

frequency response that is at a frequency fs/N, and integer multiples of this up to fs/2. 

Thus the length N=3 moving average rejects fs/3, and that’s it (a familiar periodic sync 

frequency response magnitude).  Anything with period 3 is rejected, while anything 

constant is passed.    

     Figures 12a, 12b, and 12c illustrate the end effect associated with this filter.  We chose 

as input a constant plus a cosine of period three: specifically 1 + cos(2πn/3), which is a 

sequence of ….2, 1/2, 1/2, 2, 1/2, 1/2, …..   Note that any three consecutive samples sum 

to 3, or an average of 1, which is the chosen constant.  So the average is always 1 inside 

the signal, but there are some very different end transients, as seen in the figures. 

 

     As the filter’s impulse response [1/3 1/3 1/3] moves through the filter, as stated, we get 

an average of 1.  As it walks off the end, assumed zeros beyond the end are included in 

the average, and as shown in Fig. 12a, since we have only two values, both of 1/2  

 

                                                       AN-395 (14)  



                                      

                                                            AN-395 (15) 

 



remaiing on the line, the averages are 1/3 and 1/6, exactly half the values we had in Fig. 

10.  So this instance is not new.   What will be different is when we consider the case 

where the signal sequence advances by one sample and the sample of value 2 comes 

into the end average.   Fig. 12b shows the next case, and we see here 5/6 followed by 

1/6.  So the transient is a “decay” but a slower one.   In the next example, Fig. 12c, the 

sample with value 2 is all the way to the end.   Now the end transient is 5/6 followed by 

2/3. Again we find a decay but one that gets off to a slower start.     

     Certainly these transients are not remarkable in themselves.   They are notable in that 

they may well be artificially created by an artificial termination, and are not related to what 

happens after the end of the available sequence, for which we have no evidence that it 

should not be just a continuation of the constant-plus-period-three structure we have 

observed.  That is, the average might well have remained at one.  Our treatment here has 

encroached on the realm of prediction.  Indeed, we predicted assuming zeros beyond the 

end.  Averaging is particularly unsuited to prediction.   Perhaps pretending to believe 

anything we do in such a situation is essentially just silly! 

     Here however, we might try to do something reasonable by dividing by the “right 

number” in the averages, as we eventually did in the first two experiments.   This seemed 

clear enough although we recognized in turn that we had less data to average.  Still, it 

seemed a better approach.   Can we do this here? 
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     In Fig. 13a, we have a case where we are agreeing to adjust the weights on the 

moving average.   What we did in Fig. 12 was standard: convolution or FIR filtering.  In 

the case of the two original experiments, we just thought of calculating averages correctly.  

Now that we are talking about filtering, the suggestion of changing the tap weights of the 

filter with time is rather radical.  We are now talking about a time-varying processing, not 

a LTI (Linear Time-Invariant) system.  For one thing, we don’t have build in functions such 

as conv or filter to use.  But we can just write out own code.  So while we do step into 

the “wilderness” of time-varying systems, we do know exactly what we are doing, and this 

we see in Fig. 13a.   In Fig. 13a, we see the proper average of 1 in the first three shifts.  

Then in the fourth shift, the length three filter is too long.   We are assuming now that we 

have no data beyond the end.  So we shorten the filter to length two and  change the 

weights both to 1/2.   In the bottom shift of Fig. 13a, we have just one remaining sample, 

so the filter becomes length one with weight 1 (the average is the sample).   This does not 

look unreasonable (yet) because we get two transition samples of 1/2 between a correct 

average of 1, and a final average going to 0.  
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     A better notion that there is a problem here comes up when we look at Fig. 13b and 

Fig. 13c, where instead of the shorter filters dealing only with samples of 1/2, the sample 

2 comes into play.   In these two cases for the first time, we see transition averages that 

exceed what we suppose is the true average of 1.   These transition averages include 5/4 

and 2, as shown.   We see these apparent errors are associated with a larger than 

expected sample at the end.   More on this below. 

     We have noted that in making the tap weights time varying, we are changing th length 

of the filter, down from three to two to one in this case.   Normally we would expect this to 

increase the bandwidth.  However, since this is not a LTI system any more, the notion of 

a frequency response doesn’t have the usual meaning.   So while it is clear that some 

sharper events are apparently appearing, it is best to just think in terms of the 

calculations. 

     As a final example, we look at Fig. 14 where we have a set of 20 samples formed by 

adding random noise (±0.025) to a fixed  value of 0.2 (red stars).  The 20th sample has an 

additional 0.05 added to it.  Above we expressed an interest as to what happens with 

extreme samples on the ends.  The code upt at the end here gives the code used.  Our 

purpose was to write code to use a length-3 moving average (adding two extra zeros at 

the end) and to also compute a length-2 moving average for the last two of the regular  
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samples, and a length-1 moving averages (just the sample itself) as well.  The blue dots 

connected by the blue line show the standard length-3 LTI moving average, and it rolls off 

at the end due to the appended zero samples at 21 and 22.  The alternative time-varying 

procedure is identical to the length-3 up until the average is computed at time 19, at which 

time the average is of samples 19 and 20 (green dot).  Note that this pulls the average up 

– in general, and certainly drastically as compared to the length-3 LTI. The ”average” at 

time 20 is just the sample there, a green dot with a red star center.     

 

 

 

CONCLUSIONS: 

      The overall lesson here is perhaps that data manipulations involving endpoints may 

be tricky, even with well defined data provenance, and the best of intentions.  Long before 

we might encounter the self-delusion of selection bias, or of having to “patch up” some 

data that is unavailable beyond our own control, we can fool ourselves when we forget 

that ends are usually special.  If something looks funny, zealous caution is justified. 

     There is no way to correctly “pretty-up” the most recent data.  It won’t confess to 

containing more information than the uncertainty principle allows, not about the recent 

data itself, and certainly not as a matter of prediction beyond the end. 
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% av.m  testing with averages 

 

S=[0 1 2 3 4 3 2 1 0 1 2 3 4]; 

 

SS=[]; 

for k=1:8 

   for n=1:13 

      SS(k,n)=S(n)+2*(rand-.5); 

   end 

end 

SS 

figure(1) 

plot([-2 15],[0 0],'k') 

hold on 

plot(SS(1,[1:13]),'r'); 

plot(SS(2,[1:13]),'r:'); 

plot(SS(3,[1:13]),'g'); 

plot(SS(4,[1:13]),'g:'); 

plot(SS(5,[1:13]),'m'); 

plot(SS(6,[1:13]),'b'); 

plot(SS(7,[1:13]),'c'); 

plot(SS(8,[1:13]),'m:'); 

plot(S,'k'); 

plot(S-.01,'k'); 

plot(S+.01,'k'); 

plot(S,'ko'); 

 

hold off 

axis([0 14 -1.2 5.2]) 

figure(1) 

 

% average 

sav=zeros(1,13); 

for n=1:13 

   for k=1:8 

      sav(n)=sav(n)+SS(k,n); 

   end 

end 

sav=sav/8; 

figure(2) 

plot([-2 15],[0 0]) 

hold on 

plot(S,'k') 

plot(sav,'bo') 

hold off 

axis([0 16 -1 5]) 

figure(2) 
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%create mask 

m=[1 1 1 1 1 1 1 1 1 1 1 1 1 ; 

   1 1 1 1 1 1 1 1 1 1 0 0 0 ; 

   0 0 1 1 1 1 1 1 1 1 1 1 1 ; 

   1 0 1 0 1 0 1 0 1 0 1 0 1 ; 

   1 1 1 0 0 0 1 1 1 0 0 0 1 ; 

   0 0 0 0 0 0 1 1 1 1 0 0 0 ; 

   1 1 1 1 1 1 1 1 1 1 1 0 0 ; 

   1 0 0 1 0 0 1 0 0 1 0 0 1]   

 

SSM=SS.*m 

% average 

sav=zeros(1,13); 

for n=1:13 

   for k=1:8 

      sav(n)=sav(n)+SSM(k,n); 

   end 

end 

sav=sav/8; 

figure(3) 

plot([-2 15],[0 0]) 

hold on 

plot(S,'k') 

plot(sav,'bo') 

hold off 

axis([0 16 -1 5]) 

figure(3) 

 

% average only non-zeros 

SSM=SS.*m 

% average 

sav=zeros(1,13); 

nn=zeros(1,13); 

for n=1:13 

   for k=1:8 

      if SSM(k,n)~=0; 

         sav(n)=sav(n)+SSM(k,n); 

         nn(n)=nn(n)+1; 

      end    

   end 

end 

nn 

sav=sav./nn; 

figure(4) 

plot([-2 15],[0 0]) 

hold on 

plot(S,'k') 

plot(sav,'bo') 

hold off 

axis([0 16 -1 5]) 
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%create new mask 

m=[1 1 1 1 1 1 1 1 1 1 1 1 1 ; 

   1 1 1 1 1 1 1 1 1 1 1 1 1 ; 

   1 1 1 1 1 1 1 1 1 1 1 1 1 ; 

   1 1 1 0 1 1 1 1 1 1 1 1 0 ; 

   1 1 1 0 1 1 1 1 1 1 1 1 0 ; 

   1 1 1 0 1 1 1 1 1 1 1 1 0 ; 

   1 1 1 0 1 1 1 1 1 1 1 1 0 ; 

   1 1 1 0 1 1 1 1 1 1 1 1 0] ;   

 

SSM=SS.*m 

% average 

sav=zeros(1,13); 

for n=1:13 

   for k=1:8 

      sav(n)=sav(n)+SSM(k,n); 

   end 

end 

sav=sav/8; 

figure(5) 

plot([-2 15],[0 0]) 

hold on 

plot(S,'k') 

plot(sav,'bo') 

hold off 

axis([0 16 -1 5]) 

figure(5) 

 

% average only non-zeros 

SSM=SS.*m 

% average 

sav=zeros(1,13); 

nn=zeros(1,13); 

for n=1:13 

   for k=1:8 

      if SSM(k,n)~=0; 

         sav(n)=sav(n)+SSM(k,n); 

         nn(n)=nn(n)+1; 

      end    

   end 

end 

nn 

sav=sav./nn; 

figure(6) 

plot([-2 15],[0 0]) 

hold on 

plot(S,'k') 

plot(sav,'bo') 

hold off 

axis([0 16 -1 5]) 
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% mar 

 

n=-10:10 

% original target signal 

s1=cos(2*pi*n/20) 

figure(1) 

plot([-12 12],[0 0],'k') 

hold on 

plot(n,s1) 

hold off 

axis([-12 12 -1.2 1.2]) 

 

%   20 test signals indexed by k 

figure(2) 

plot([-12 12],[0 0],'k') 

hold on 

for k=1:20  

   A = 1+0.5*(rand-0.5); 

   f=1/20 + 0.4*(rand-0.5)/20; 

   ph=pi*(rand-0.5)/5; 

   B=10*(rand-0.5); 

   s0=A*cos(2*pi*n*f +ph)+ B; 

   s(k,:)=s0; 

   plot(n,s(k,:)) 

end 

axis([-12 12 -7 7]) 

hold off 

 

% Fig. 3  Remove Means 

figure(3) 

plot([-12 12],[0 0],'k') 

hold on 

for k=1:20 

   s(k,:)=s(k,:)-mean(s(k,:)); 

   plot(n,s(k,:)) 

end 

hold off 

axis([-12 12 -1.7 1.7]) 

figure(3) 

 

% now make signals with last sample 0 for r signals 

r=5 

ss=s; 

for k=(20-r):20 

   ss(k,21)=0; 

end 

 

% compute averages 

figure(4) 

plot([-12 12],[0 0],'k') 

hold on                                                             AN-395 (23) 



sav=zeros(1,21); 

ssav=zeros(1,21); 

for k=1:20; 

   sav=sav+s(k,:); 

   ssav=ssav+ss(k,:); 

end 

sav=sav/20; 

ssav=ssav/20; 

% - do correct compute of average 

ssavr=0; 

for k=1:(20-r) 

   ssavr=ssavr+ s(k,20); 

end 

ssavr=ssavr/(20-r); 

plot(n,sav,'*') 

plot(n,ssav,'ro') 

plot(10,ssavr,'go') 

plot(n,s1,'c') 

hold off 

axis([-12 12 -1.2 1.2]) 

figure(4) 

   

% upt.m 

s=c*ones(1,20)+ 0.05*(rand(1,20)-.5 ); 

A=1; 

for n=20:20 

   s(n)=s(n)+A*0.05; 

end 

s=[s 0 0]; 

figure(1) 

plot([-2 24],[0 0],'k') 

hold on 

plot([0 22],0.2*[1 1],'m:') 

plot([1:22],s,'r*') 

for k=1:20 

   sav(k)=(s(k)+s(k+1)+s(k+2))/3; 

end 

savg19=(s(19)+s(20))/2; 

savg20=s(20); 

plot([1:20],sav,'ob') 

%plot([1:18],sav(1:18),'og') 

plot([1:20],sav(1:20),'b') 

plot([18:20],[sav(18) savg19 savg20],'g') 

 

plot(19,savg19,'go') 

plot(20,savg20,'go') 

hold off 

axis([-2 24 -0.05 0.3]) 

figure(1) 

  

                                                                  AN-395 (24) 


