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                                                            NODE VOLTAGES BY SUPERPOSITION 

 

    Once we encounter Ohm’s Law, probably the first problem we are asked to solve is 

the voltage-divider.   This shown for two impedances Z is shown in  Fig. 1 below.   We 

can solve this by calculating a current and a voltage drop across the lower leg (the one 

to ground) of the divider.   This is: 

                          
    

     
                                                                                  (1) 

          Almost certainly everyone reading this would have written down equation (1) 

without deriving anything – it is so familiar.   Further, we recognize that the actual 

equivalents of Z might be a resistor R, a capacitor 1/sC, or an inductor sL, OR some 

combination of these as long as we have only two terminals to the network.  For 

example, Z might be a parallel combination of a Resistor R and a capacitor C, which we 

calculate at R / (1 + sCR).    Note that we DO ASSUME that no current is flowing from 

the VOUT-1 node.  Old stuff here.                                                                   
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     Almost as familiar as the simple divider is the problem of finding the voltage at a 

node between two impedances such as in Fig. 2.  Again we assume that no current is 

flowing out of the VOUT-2 node, although a current is generally expected to flow through 

it, from V1, through Z1, through the node, through Z2, and to V2.  There is just no current 

“tapped off” of the node.  We perhaps measure the voltage with a high-impedance 

meter or scope, or feed the voltage to an op-amp input terminal.  So what is VOUT-2 in 

terms of V1, V2, Z1, and Z2? 

     You perhaps are tempted to calculate the current and voltage drop and attach this 

voltage drop to one of the input voltages.   You know exactly what to do, but hopefully 

you will say “Hey – this is a linear system – I can just apply superposition”.  That is, the 

answer is the sum of applying V1 with V2 assumed to be zero and then V2 with V1 

assumed to be zero.  Applying the voltage divider in both directions.   You can always 

work it out the hard way a few times if you doubt this.  Soon enough you know that: 

 

         “The voltage in the middle is the first voltage times the impedance in the  

         opposite leg plus the second voltage times the impedance in its opposite 

         leg all divided by the sum of the two impedances” 

 

                          
          

     
                                                      (2) 

 

Either you know this, or will soon consider it an essential and trusted shortcut.   It is just 

using equation (1) twice.     So far so good.   Bag of tricks. 

    So what if you have three impedances connected to a node, or four, or more?  Let’s 

convince ourselves that we know how to solve the problem.  (1)  Superposition still 

applies of course.  (2) And when we look at the contribution of any one voltage, with the 

other voltages set to zero, those set to zero are all impedances in parallel, and we can 

find the equivalent of the combination.   Done – just the details.    

     Exactly how we proceed with three or more impedances probably depends on the 

complexity of the impedances.  For example, if they are three (or more) resistors all of 

resistance R (any R) we know the node in the middle is just the average.  This won’t 

slow us down even one second.  If on the other hand, the impedances are unequal 

resistors and/or parallel and/or series inductors and/or capacitors, well, this may take 

some time. 
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     You might well see two possible approaches.  First, you might just try to do all the 

algebra at once, filling a page with the various terms and hoping for the best.   You best 

know if this looks like something you normally overcome (or likely not).  You are aided 

by such things as “dimensional checks”  (you can’t add R and C, and sCR is 

dimensionless, etc.), but it’s still tough.  At the end, you can check some limiting cases 

(like does it give the right answer if a certain C →0).  Yet dimensional errors and 

“limiting cases“ only show that you may not be wrong – not that you are right.  Why not 

just do the algebra a second time?   Yes, observe that it is easier to do the second run – 

probably requiring about half the time.  But the corollary to saving time is the possibility 

that you also followed familiar steps, and perhaps the same errors.   So you are working 

on an “easy” problem but one which can be very tedious.  Something like equation (2) 

or the rule written above it sure would seem handy, even if just as an alternative check. 

     So – moving ahead ot Fig. 3, three impedances.   It is clear that because of 

symmetry we only have to figure out one term, so let’s assume that V1 is active and V2 

and V3 have been set to zero.  So this is really just a voltage divider with Z1 in the top 

leg and the parallel combination of Z2 and Z3 in the lower leg.   The contribution of this 

voltage V1 to VOUT-3, which we can call VOUT-3(From 1), using the notation [ Z2||Z3 ] to 

indicate the parallel combination of Z2 and Z3, is: 

                               
            

             
                                                           (3) 

But  [ Z2||Z3 ] = (Z2Z3)/(Z2 + Z3) which is exactly the form we use for parallel resistors of 

course.  Plugging this in and simplifying we have: 

                                 
          

                 
                                       (4) 

Then summing the exactly similar contributions of  V2 and V3, we get:              

                          
                          

                 
                                    (5) 

and this is the answer; we just need to plug in the impedances. 

     It is interesting to put the results into words, as we did just above for equation (2). 

         “Form a numerator as the sum of three terms obtained by multiplying each    

           voltage by the product of the impedances in the other two legs.  Then          

           divide by the sum of  the products of the impedances in the numerator” 
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Please note at this point that this reduces to equation (2) for the limiting case where Z3 

becomes infinite.  This of course should happen.   And if all the impedances are the 

same, we get the average of the three voltages, as we should.   We are almost able to 

guess a general rule.   But we kind of need to try one more impedance to make the 

scheme totally obvious.  

 

     Fig. 4 shows four impedances.   Now we have three parallel impedances in the far 

legs as we use our superposition component ploy. 

 

                                 
                

                 
                                                       (6)                               

 

 

We can do the three in parallel by combining two first, and then the third to that result.  

Perhaps it is better to just remember that impedances in parallel add as reciprocals.  

Calling the parallel combination [Z2||Z3||Z4] = Z* we have: 
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so: 

                      
      

              
                                                                      (8) 

and: 

                            
                           

              
                                   (9) 

 

                                    
    

       
            

                            
    (10) 

Then summing the exactly similar contributions of  V2 and V3, we get:              

                          
                                               

                             
        (11) 

 

This result is the extension of equations (2) and (5).   Note that if we look at the case 

where Z3 and Z4 go to infinity, we keep only the terms which have the product Z3Z4, and 

we get back equation (2), as is required.  Likewise, if Z4 by itself goes to infinity, we get 

back equation (5).   In addition, if all four impedances are identical, we get back the 

average of the four voltages.   
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    The verbal rule for three impedances is thus modified for four impedances as follows:     

 

           “Form a numerator as the sum of four terms obtained by multiplying each    

           voltage by the product of the impedances in the other three legs.  Then          

           divide by the sum of  the products of the impedances in the numerator”      

 

     We are in a position, now, to write a general rule for N impedances that is not that 

hard to remember. 

 

           “Form a numerator as the sum of N terms obtained by multiplying each    

           voltage by the product of the impedances in the other N-1 legs.  Then          

           divide by the sum of  the products of the impedances in the numerator” 

 

 

All you need to do is write down the sum of all the voltages multiplied by the “other” 

impedances and divide by the sum of the impedance products.  

 

     And then, check to be sure your result is dimensionally correct and correct in the 

limits. 

 

     Finally, check again. 

 

 

TWO EXAMPLES 
 

     If you have reached  

this point, you will likely 

 be interested in some 

examples, and may well 

have just jumped here, 

recognizing that the algebra 

above was largely a tedious 

derivation.  We will do the 

examples using only the  

rule stated in words above 

(purple in the most general 

case).    Fig. 5A shows the 

first example.  In the 

absence of the one shunt 

capacitor C, this is just a  

 

                                                            AN-394 (5) 



three input average.  The voltage at the red node is perfectly buffered by the ideal op-

amp follower, so that node voltage is already Vout.   Perhaps we suppose that the 

capacitor C will just be a high-frequency boost, and apply to the V1 node.  Using the 

verbal rule however we can just write Vout as a fraction.  For the numerator, we write 

down a summation of the three voltages V1, V2, and V3, and apply a weighting to each 

voltage that is the product of the two impedances in the legs away from that voltage.  

For the denominator, we just sum these impedance products as in equation (12).  Note 

that the impedance of the parallel RC input is R/(1+sCR).    

 

            
             

 

     
     

 

     
  

       
 

     
  

 

     
  

                                       (12) 

 

                        
                  

     
                                                (13) 

 

From this we easily observe that the voltage V1 is handled differently than the voltages 

V2 and V3. and this we anticipated.   The voltage V1 has a transfer function T1(s) that is: 

 

                             
    

  
  

      

     
                                            (14) 

 

while V2 has the transfer function: 

 

                             
    

  
  

  

     
                                             (15) 

 

and T3(s) is the same as T2(s). 

 

     So we have the answer.   Indeed V1 gets a high frequency boost, but V2 and V3 get a 

high-frequency cut (they are low-passed) by the capacitor in the V1 leg.  Indeed we 

notice that for high frequencies (s →∞) T1(s) goes to 1, while T2(s) goes to 0.  At DC, 

s=0, both T1(s) and T2(s) are 1/3.  The corresponding physical interpretations are that in 

Fig. 5A, at DC the capacitor is effectively thrown out (three equal resistors R) giving 1/3 

while at high frequencies, the capacitor C is effectively a short from V1 directly into the 

red node.  To complete the analysis, the frequency responses corresponding to 

equations (14) and (15) are plotted in Fig. 5B. 
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     Our second example is the inverting 

summer with gain a as shown in Fig. 6. 

The added twist here is that we specify 

that the op-amp here is real, not ideal.  In 

the ideal case, the (-) input would be a 

virtual ground, and summing current at 

the red (summing) node would give us  

  

    Vout  = -a(V1+V2+V3)               (16) 

 

Here instead we will be using the real op-

amp model: 

 

     Vout = (G/s) [ V+  -  V- ]           (17) 

 

so while V+ is clearly 0 (grounded) we need to calculate V- using the techniques that are 

the subject of this note.   Notice that V- is NOT just the average of V1, V2, and V3 

because we have that nasty resistor aR running to Vout.  The voltage V-, the red node, is 

determined by four impedances to four voltages, V1, V2, V3, and Vout.  
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     Again following the verbal recipe, we can write down the equation for the red node of 

Fig. 6, as marked V-: 

 

            
                                           

                             
                                       (18) 

 

Here once again we have a lot of simplification needed, but it is probably a good idea to 

follow the recipe exactly at first.  Our next step is to do this simplification and at the 

same time to use equation (17) with V+=0, solved for V- . 

 

            
                    

      
  

  

 
                                                               (19)       

 

which is then rearranged as: 

 

                                                                                        (20) 

 

or then: 

                
    

        
  

   

    

   
 

    

                                                              (21) 

 

 

Note that this is –a as G→∞ and/or as s→0.  But the important result is that the summer 

has a pole at –G/(1+3a).  Accordingly, it is a low-pass filter.   Things should be fine as 

long as we don’t try for frequencies approaching G/(1+3a). 
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