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                                                              FUN WITH PROBABILITY PUZZLES 2 –  

                                                                                       FALSE POSITIVES     

 

      In the last AN we offered the “Monty Hall” puzzle as a popular example of a 

surprising result in probability theory.   Here we want to take a look at a second case 

commonly brought forward and highly relevant – that of a false positive test.  So let’s 

consider some disease: the almost certainly fictional, but ever-threatening “Horrible 

Crud Disease” (HCD); a taunting tease of my childhood.   

 

     We suppose that there is a medical test for HCD.  Like all medical tests, the test for 

HCD is not 100% accurate.   In some cases, the test says you do have the disease 

when you don’t (false positives) and on others, it says you don’t have the disease when 

you do (false negatives).  Nobody wants HCD anyway, so let’s assume it is rare.  So if 

you have just tested positive for HCD, what are the chances that you really do have it? 

 

     So make up some numbers.  Let’s assume that HCD is expected in 1% of the 

population.  The test for HCD has a 5% false positive rate and a 2% false negative rate.   

So, you perhaps look at your positive HCD test and conclude that it could only be 

wrong, that is, a false positive (false alarm) in 5% of cases (one in 20).  Isn’t that what it 

means?  Your consolation is that the HCD is known to be subject to 100% recovery in 

one day – so let’s take out the anxiety element.   Still, you are curious about the 

chances that you may not really have HCD. 

 

     So consider a population of 10,000 

people.  Of these, 1% or only 100 actually 

have HCD.   The remaining 9900 people 

do not.  Of the 100 people who do have 

HCD, 2 are missed because of the 2% 

false negative rate.   Of the 9900 people 

who do not have HCD, 495 will 

nonetheless test positive due to the 5% 

false positive.   Since there are 10,000 

people total, 10,000 – 495 – 98 – 2 = 9405 

don’t have HCD and tested negative.   

Here  is a table:                                           
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     So let’s look at just the people with positive tests.  Of these 593 persons, only 98 or 

about 16.526% actually have HCD.   So this completely changes the picture.   Instead 

of feeling you were 95% sure to have HCD you now only have a chance of 16.5% of 

having it.  Clearly the result seen here is the result of a fairly rare disease and a fairly 

high rate of false positives.  Note that this table, well studied, tells us most everything 

we need.   

 

     Above we just constructed a table of possible outcomes and did not use any fancy 

notions of conditional probability and/or Bayes Formula. [More properly, arguably, we 

might have use an apostrophe and: Bayes’ Formula, sometimes Bayes’ Theorem.]  

While it is almost certainly true that a table of this sort is more valuable to the ordinary 

person than the “theorem”, the notion of a mathematical theorem telling you that you are 

just fine might be very reassuring (or not). 

 

     Bayes Formula tells us how to modify an initial probability number in the light of all 

the evidence.  Here is the formula: 

 

       
          

    
 

 
This powerful formula, while simple, is not that easy to understand without some study.  

It is just a multiplication of two things and then a division, but what are the symbols?  

First of all, they are all probabilities (P).  The upright “bar” is a symbol that means 

“given”.  Thus P(D|T) means the probability that D is true given the fact that T is true 

(has occurred).  [Caution: sometimes the opposite or even a different notation is used.  

In this case, D is the disease and T is a positive test.]  This is exactly what we want to 

know:  what is the probability that you have the disease given that you tested positive.    

 

     The point is that you might have mistaken the probability you want to know for the 

one you were given: P(T|D), the probability that if you have the disease, the test will be 

positive.  We see that the two are skewed by the ratio P(D)/P(T).  Here P(D) is the 

probability (before any tests) that you have the disease (the “background” rate).   

Accordingly any high probability of the test detecting the disease, P(T|D), which should 

be very high if the test is of any value at all (perhaps 90% to 99%) is reduced, first by a 

low value of P(D), the disease is not very prevalent, and further by a high value of false 

positives, which will make P(T) much larger, P(T) being all positive tests, true positives 

and false positives.   
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     But, exactly what are the symbols in our example?  P(D) is the background rate of 

the disease which we have taken to be 1%.   This is an extremely important number to 

know, and it may be necessary to consider your exact current membership in a 

particular population.  If you are a college student in classrooms of hundreds of 

students, influenza may be popular, but if you are overwintering at South Pole Station 

and have been there a couple of months with your fellow workers (isolated from visitors) 

even the “common cold” might be uncommon.  Of course, you may be “immune” from 

certain gender-specific diseases if you are the wrong gender for that disease.  So let’s 

assume we do have some reasonable estimate of this “prior” probability P(D). 

 

     The probability P(T|D) is the reliability of the test in detecting the disease that is 

actually there.  That is, we are concerned with false negatives.   We have taken the rate 

of false negatives to be 2%.  Thus P(T|D) is taken here to be 0.98.  Again, we expect 

this number to be approaching one if the test is any good at all.   That is, we want very 

few false negatives (misses), which may have serious consequences.  This does not 

mean that too many false positives can be tolerated, and not just because they cause 

anxiety.  In his 2008 book, The Drunkard’s Walk, Leonard Mlodinow points out that all 

false negatives can be eliminated “simply” by gratuitously reporting all positive results!   

 

     Only the probability P(T) is likely to be difficult to obtain.   This is the probability of a 

positive test, the true positives and the false positives.   The true positives are 

P(D)P(T|D) and the false positives are [1 – P(D)] P(T|~D) = P(~D)P(T|~D).  Here 

P(T|~D) is the rate of false positives, ~D standing for No Disease.  We chose this to be 

0.05.   Thus P(T) = (0.01)(0.98) + (0.99)(0.05) = 0.0593.   [Note: It’s a sum of terms, and 

note that the major contribution to the 0.0593 is due to the 0.05 false positive rate.]  The 

exact same number can be calculated directly from out table as (98 + 495)/10000.   

 

     Thus our result using Bayes Formula is: 

 

                 
          

                          
  

 

    
            

                         
 

 

          

 

which is the same result we got playing with the tabulated numbers.* 
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     These medical examples are common, and authors often point out the need to have 

medical professionals have a much better understanding of the often dramatic 

implications of conditional probability.  Rightly so.  Yet the mathematical considerations 

here extend to a much more general class of problems, and indeed to very general 

notions of Bayesian inference:  revising our certainty, a “prior”, as to whether a given 

hypothesis (H) is true or not in light of new evidence (E).  The general formula is: 

                                                               

                                                 
          

    
 

 
 

     We could well imagine using the formula in any case where we believe a result is 

expected with a certain associated probability, but, we have some additional information 

given that we have not used.   At the very least, we need to think a bit about whether or 

not this additional information might affect our evaluation. 

 

 

 

 

 

                               *         *         *         *        *         *         * 

 

 

 

* This result was made up from scratch, but very similar examples are common in books 

and blogs.  After doing my calculations I had in mind I needed to compare my results to 

two of these, one of which is a very real example which Mlodinow tells (with his 

characteristic good humor – surprising perhaps in this case – relating to his own false 

positive HIV test!).  The other related to mammography in the book The Theory That 

Would Not Die (2011) by Sharon Bertsch McGrayne, an admirable general-reader 

discussion of Bayesian methods.  There is very little math in this book – and what is 

there seems confused/wrong.  The calculation relating to false positives is in Appendix 

B.  The numbers there are wrong as the number 32/10,000 should be 32/40.  It’s the 

probability P(T|D), the true positives.  (The final quoted result of 3% is correct.)  Perhaps 

this typo is corrected in the paperback.  
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