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                                                                                FUN  WITH RED NOISE         

                                          

       
     Noise has color!  Well, we have all heard of white noise.   That is an audible signal 

with a flat spectrum, and likely deserves to be called white for that reason.   There is 

also so-called pink noise often used in audio testing.  It rolls off at 3db/octave, and is not 

all that easy to generate (it is approximated by a series of filterings of white noise).   You 

can also find blue noise, a 3db roll-up.  A grey noise is a white noise adjusted to partially 

compensate for the human hearing curve (which rolls-off on both high and low ends).  

And some people market recordings of background natural sounds such as ocean surf 

or wind through tree leaves as “green” noise.  Then there is red noise, a 6db/octave roll-

off.  It is thus a sound with emphasized lower frequencies  - not a bad analogy with red 

light, and we can better appreciate pink noise as an intermediate between white and 

red.  Red noise is also called “brown” noise – but not because of the color.  Rather it is 

named after Robert Brown who is famous for “Brownian Motion”.   The connection 

between red (brown) noise and Brownian motion relates to the “random walk” nature of 

both.   

     The random-walk or “drunkard’s walk” is integrated white noise.  It has memory.  The 

next value of a red sequence begins with the current sample value, and then adds or 

subtracts an uncorrelated white sample to it, and so on.   It is very similar to producing a 

signal by flipping a coin and totaling.  If it’s heads, for example, you can increases the 

sequence by one, and if it’s tails, you subtract one.   This means the resulting sequence 

is correlated.  That is, the next sample can’t be very far from the current one.  This 

random walk has some unexpected (at least counter-intuitive) properties.  For example, 

we might expect it to hover around zero, with frequent crossings of zero.  On the 

contrary, it often wonders far from zero for long stretches.  Zero-crossings are rare.  Yet, 

when we consider that it is composed of all frequencies, and that the lower frequencies 

are of larger amplitude (the 6db/octave roll-off), it is not surprising that no matter how far 

away, it will eventually come back.  After all, you got far away, and the same sort of 

“luck” can just as well get you back.   Put another way, in the scenario of a drunkard 

making random changes of direction in an attempt to get home, he will always get home 

eventually.   Of importance later however: note that when we terminate our generation, 

there is generally a very good chance we will be a good distance from zero.       
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     So we can generate red noise easily, 

digitally, by integrating a white noise sequence 

(a random number generator).  All we need to 

do in add up the sequence.   Fig. 1 shows the 

absurdly simple digital filter integrator that we 

will use here.  So it is very similar to adding up 

heads and tails, except here there is no 

requirement that the white noise is binary 

(heads/tails being binary).  We generally would 

use a uniform or Gaussian distribution for the 

input.  So a white noise algorithm and a few 

lines of code do what we need. 

 

% Red Noise Test   redtest.m 

% m signals 

for m=1:10000 

  sw=2*(rand(1,1020)-0.5);  % white, uniform 

  g=1  % values less than 1, like    

      % 0.95  are sometimes used.   

      % red filter - pole at z=+g,  

      %     (integrator) 

     sr(1)=sw(5); 

       for k=2:1000 

           sr(k)=sr(k-1)+g*sw(k+4); 

       end 

 

       %  FFT analysis and sum 

       SR=abs(fft(sr)); 

       SR=SR(1:501); 

       S=S+SR; 

end 

 

figure(1) 

plot([0:500],S) 

figure(2) 

loglog([0:500],S) 

grid 

axis('square') 

figure(2)                                                   
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         The Matlab code redtest.m and the program output in Fig. 2 shows that the 

generator does give a 6db/octave (45 degree on log-log paper) rolloff.  This will be our 

basic tool when we want to generate red signals.  Fig. 3 shows a typical white noise 

signal (the black curve) along with its corresponding red noise (red curve) and three 

other red noises (blue, green, and magenta) generated from white noise signals not 

shown.  Note that the red noise curves are very different from the white noise. They 

move to the next samples gradually, so successive samples are correlated. Two 

additional things to note:  First, the white noise has many zero crossings (about 53?) 

while the red noise curves have very few.  In fact, the red curve seems to have a strong 

preference for positive, the magenta curve tried negative and then turned positive, the 

green favors the negative range, and the blue seems to be toying with the idea of 

returning to zero – but who can say?  Every run will be different.  Second, there is a 

clustering or convergence of the curves around the start.   This is artificial - purely due 

to the fact that we started to generate the curves starting there.   A more realistic idea of 

what the red noise curves should really look like is seen in Fig. 4, obtained by taking the 

samples much further in.  This is much the same is just shifting the curves up or down 

at random.  Where did that constant come from?  Well, if it is an integration, recall the 

arbitrary constant.   
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     So Fig. 4 is more typical, the curves doing their own thing.  Note the scarcity of zero 

crossings, except for the one white noise curve.  Corresponding to this is the 

observation that the portions shown here are not zero mean, or even close (the white 

noise segment may be near zero mean). 

 

 

SIMULATING PROXY TEMPERATURE CURVES 
 

So What?  Well – this really is fun to play with red noise signals, but why am I doing it 

here.   Actually, I played with this several years ago, and the result was ambiguous.   

Here is what it is about. (Still here, the discussion is not intended to be comprehensive.)  

 

     It is about the “Hockey Stick” of climate change fame.  It is about the fact that there 

were no good thermometers or possibly even people who cared about keeping track of 

temperature in the past, at least until perhaps 1800 at best.  It’s hard (some say 

impossible) to determine, or even define, the “temperature of the earth” anyway.  Yet by 

using temperature “Proxies” such as tree rings, one can attempt to recover some 

possible notion of historical temperatures – so called paleoclimatology.   
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     So let’s say we have a lot of “records” of something that may be related to climate, 

perhaps mainly to temperature.  Perhaps tree rings, sediments, coral layers, etc.   The 

data are all noisy, incomplete, and perhaps even totally suspect.   Looking at the stack 

of data, we can’t take it all in at a glance (calibrations difference, error bars, incomplete 

sequences, obvious conflicts) so we resort to statistics to try to dig out something 

meaningful.  Things we do find may be coincidental (enough monkeys, enough 

typewriters…), or illusionary (like looping audio noise and hearing speech – especially if 

someone else tells us what we should be hearing).  Of course, we are certainly also 

subject to confirmation bias (Hey – hey! – there it is – just what I was suspecting).    

 

     One overriding principle may perhaps remain useful.  Garbage In – Garbage Out.   

But I am thinking here of that maxim in the reverse direction of the usual.   I mean that if 

we put in garbage, we SHOULD get garbage out.   Garbage in → Good Stuff Out is not 

acceptable.  Specifically, if we put in random data, and think we see something valid 

coming out, we are fooling ourselves.   If you get a result with your real data, that’s one 

thing.  If you get essentially the same result using random data, you just blew any 

credibility.  And, you are supposed to try this! 

 

     To be clear here, there is not even one sample of real physical data below.  It is all 

just random numbers.  Neither have we selected signals that might resemble real proxy 

data.  We took what came out, with few exceptions, and the code is all here.  [One 

exception is when a plot ran off the chart.  So a few things were redone.] 

 

    In the case of the “Hockey Stick” [1] a sharp upturn in the late 20th century “global 

temperature” was reported, along with an equally important flattening of supposed warm 

periods going back a thousand years.  That is, it was said to be getting warmer (no not 

warming – alarmingly HOT) since about 1970, and it never was as hot in the past (at 

least for 1000 years = ”forever” for many people).  There are many many reasons why 

this claim is likely bogus.  One of these reasons is that the statistical methods used to 

handle proxy data were apparently (for whatever reason) used incorrectly.    

 

    Specifically, the technique of “Principal Component Analysis” (PCA) was employed, 

but with some heroic detective work, was found to use a non-standard normalization 

[1,2].  It was claimed that the reported hockey stick (HS) shape was a result of the error  

(innovation!) in the PCA code.  This is hard to argue with because the claim is that with 

random data (instead of tree rings, etc.) the method “mined” that data for hockey sticks.   
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      Previously [3] we looked at a perhaps related example of how a “selection fallacy”, 

as used by some researchers, would lead to a HS shape, from random data.  This was 

basically – silly.  Here, the faulty PCA is perhaps more subtle.  The procedure is to work 

with red noise, using a standard PCA, and then using a PCA with faulty normalization.  

In this note, we are not using PCA (see AN-385 to appear), but just discussing how the 

non-standard normalization leads to signals of a different nature. 

 

     Why red noise – why a correlation.  Local “weather” changes, quite unpredictably on 

an hourly (or minute by minute) time scale; as well as somewhat more predictably as 

daily and seasonal changes.   “Climate” also varies always (far less predictably) on a 

time scale of perhaps decades and even much much longer.  Knowing that a climate 

variable, let’s say temperature averaged over a year might result in a more robust 

growth of a tree as reflected in tree ring characteristics, we might ask what else could 

lead to stronger or weaker tree ring growth.  We would also suspect that a good year 

might be followed by another relatively good year.  Perhaps decadal trends are at work.  

Or, perhaps a good year resulted in a storage of resources (like in the roots) so that the 

next year was also quite good, despite less favorable weather perhaps, and so on. It is 

likely clear that a redder noise is more appropriate than a whiter one.      

 

      Let’s begin with the generation of a set of 40 length 50 red noise signals.   These 

are shown in Fig. 5a. This is basically an extension of the result in Fig. 3 where there 

were only four signals.  Here we just consider the overall pattern (note that one of the 

40 goes off scale).  Yes, it’s a mess.  The exact details are of no importance.  The 

clustering around zero is again observed, and we know why this happens (we start 

there).  We likely guess that it is not the best place to choose our signals.  We need to 

choose signals further in (like Fig.  4) and it seems we could just take the signals from 

the start but add a random starting point (lift or lower randomly).   

 

     It is obvious that these signals in Fig. 5a are not zero-mean.  This is a consequence 

of the fact that they are truncated.  Even a truncated white signal is not zero mean, and 

the red signals are even more problematic.   Why do we care about zero mean?  

Because the PCA theory demands that.  Further, it should be interesting to observe 

what happens when we remove the means on a signal-by-signal basis, for which we will 

obviously have to use smaller (less cluttered) sets of signals.  But for now, the large set. 
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  Removing the mean we see that the clustering around zero will go away (Fig. 5b).  

Recall that that was an artificial clustering – just a matter of where we started the 

integration.  We noted that the clustering could have been eliminated by adding a 

suitable random offset, but here the clustering goes away because of the removal of the 

specific calculated means of each signal.  This is a special treatment. So all the signals 

have been shifted up or down, although it is virtually impossible to see this in these plots 

(redone with fewer signals in Fig. 6 below). 

 

    In the controversial alternative procedure, instead of removing the means of the full 

sequence, only the means of a small region at the end was used.  Initially we might 

supposed that the result would look similar to Fig. 5b.  But it’s very different, and this is 

the point.   The actual result is seen in Fig. 5c.   There is a strong resemblance to Fig. 

5a, except it is time-reversed.   How did that happen?   It looks as though the signals all 

decided to head for zero.  The pinching in Fig. 5c here is completely artificial in much 

the same sense that the pinching in Fig. 5a was a matter of choosing (artificially) a zero 

starting value prior to integrating the white noise.  What did we do here – specifically? 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                    

     We subtracted off a mean.  NOT the mean of the entire sequence, as PCA requires, 

but the mean of only the last four samples of the 50 total.   Because the samples are 

highly correlated, the last four samples are somewhat alike (as are any four consecutive 

samples), so tend toward one number.  Now, taking this as a valid notion of the correct  
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mean to subtract off, we necessarily force all the red noise curves close to zero for 

those end samples.   It could not be otherwise.  This is all that happens in Fig. 5c.  It is 

in fact a wider pinch (four samples) than the pinch in Fig. 5a at zero.   In the actual 

climate data, the mean was taken not over the entire proxy data record (about 1000 

years), but only of the most recent hundred or so years [2]. 

  

    So, the question as to whether or not the faulty (at best, alternative) method makes a 

difference is clearly answered yes.  Well, at least it is yes in the case where the mean of 

different sub-sequences are very different.  Thus it is likely to make a difference in a red 

noise case, where, for some, perhaps most of the curves we generate, long sections 

wander far away from zero for a while.    It is far less important if the sequence had no 

correlation or change of statistical parameters (obviously).   But what do we get in a 

relatively large collection?   Well, we get Fig. 5c, but that’s not much help if we want to 

consider the influence of any one curve.  So let’s look at fewer curves, keeping in mind 

that the word “typical” is not really applicable here.   

 

       

 

                                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        In Fig. 6a we have plotted seven red signals just as they are generated from zero.  

Two of them were specifically colored (red and green respectively) to help recognize 

them later in Fig. 6b and Fig. 6c.  This was the impossible task with Fig. 5.  It is possible 

to recognize the other 5 in Fig. 6 if you don’t mind a little eyestrain.    
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     Happily the red curve is a good example, as it has a diagonal sweep to it. Thus we 

see that it is highest in Fig. 6a, and lowest in Fig. 6c.   Specifically, in Fig. 6a the left end 

is caught in the start pinch, and in Fig. 6c, the right side is caught in the pinch caused by 

the irregular normalization.   The middle case (Fig. 6b) shows what we can well expect 

has equal extent above and below the horizontal axis – the usual mean.  Note the 

difference between Fig. 6b (removal of means) and Fig. 4 (generation away from the 

starting point).   Fig. 4 does not have zero mean; Fig. 6b does for each curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

     Now, in Fig. 7, we do show just one curve, the original as generated, the zero mean, 

and the mean of the last four.   Above we said we took the curves as they randomly 

came out, with a few exceptions.   This is one of the exceptions.  The program was 

iterated until we got a good example (probably a dozen tries), specifically to get the 

upward swing (as occurred naturally in the red-colored curve in Fig. 6).   

 

    The curve is an example of a hockey stick, but this is not the point.  If we ran enough 

examples, we could get about any curve we wanted.  Curves such as the example of 

Fig. 7 with the HS shape probably occur in 5% of the examples.  But, this is not the 

point.  Here we have shown what happens under the different normalizations. 
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     The dotted blue curve is the original as generated, and note that its left side is in a 

region of the axis.  The blue version is the correct normalization. The red curve is the 

unconventional normalization, and note that its right side is in the region of the axis.  So 

the curve is shifted so that it changes from the dotted blue to the red – effectively pined 

at its different ends.  But that is not the point either, except we agree that the first curve 

(dotted blue) is not normalized at all, and it was not acceptable for PCA.  Who would 

have even though to starting there?   

 

    So what is the point?  In pinning one end (either end) of the curve at zero, the 

contribution of that particular curve to the total variance is greatly enhanced relative to 

the properly centered curve.  This means that in the PCA calculation, this curve has 

much greater influence than it deserves if it were properly centered, and its shape is 

enhanced in the first principal component.  In pinning all the curves about zero at the 

right side, those with greater “slope” will be given more weight than they deserve.   This 

is true to a certain extent for most of the curves, although generally to a lesser extent 

than in the example of Fig. 7.   It all adds up to a HS.  Incidentally, the downslopes and 

upslopes contribute to the same result in PCA. 

 

     Another way to look at it that is more familiar is perhaps to ask what the “energy” in 

the three curves of Fig. 7 is.  It would seem that the dotted blue and red curves would 

have more energy than the blue curve, and this is true. If we sum the squares of the 

samples for each curve, we get: 

   

                         dotted blue (as generated)    428.03 

  

                         blue (correct mean)               206.89 

 

                         red (non-standard mean)       466.06 

     

 

SUMMARY: 
 

     Here we hope to have provided a basic introduction to red noise and why we are 

using it.  Further, we have attempted to show why improper normalization of the noise 

leads to a biasing of the signals.  In particular, even before we consider PCA and its 

requirements, we see that the signals are drastically shifted and “pinched” to pass into a 

region near the axis near the end of the signal.  The consequences of this, along with 

PCA examples, will appear in the next AN in this series. 
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SOME MORE MATLAB CODE USED HERE: 
 

%  redsignals 

%  Compare Standard vs. Custom Mean Removal       

%  This program generates some of the figures in AN-384 as 

%    noted in comments.  The generation portion is common 

%    to all the figures 3-7 of AN-384.  The display code 

%    is similar to that here for all of Fig. 3-7. 

%  

% GENERATE SIGNALS 

% 40 length 50 signals - RED Noise 

R=40    % number of signals 

C=50    % length of signals 

xsorig=2*(rand(R,C)-.5);  % White 

% Now Redden 

xs=xsorig; 

for kk=1:R 

   for mm=2:C 

      xs(kk,mm)=xs(kk,mm-1) +xs(kk,mm); 

   end 

end 

% Transpose and save copies zs and ys 

xs=xs';   % to be mean-adjusted standard 

zs=xs ;   % reserve copy 

ys=xs ;   % to be mean adjusted non-standard 

% 

% ****************************************** 

% Standard Removal of Mean - xs 

mn = mean(xs,1);  

for k=1:R 

   xs(:,k)=xs(:,k)-mn(k); 

end  

%  

% Now Plot/Display Standard - First 5 

figure(1) 

plot([-100 500],[0 0]) 

hold on 

plot(xs(:,1),'b') 

plot(xs(:,2),'r') 

plot(xs(:,3),'k') 

plot(xs(:,4),'g') 

plot(xs(:,5),'m') 

axis([-5 55 -7 7]) 

hold off 

figure(1) 
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% 

% **************************************** 

% Modified Removal of Mean  - ys 

for k=1:R 

   rowk=ys(:,k); 

   mn(k)=mean(rowk(48:50));  

   ys(:,k)=ys(:,k)-mn(k); 

end  

% Now Plot/Display Modified - First 5 

figure(2) 

plot([-100 500],[0 0]) 

hold on 

plot(ys(:,1),'b') 

plot(ys(:,2),'r') 

plot(ys(:,3),'k') 

plot(ys(:,4),'g') 

plot(ys(:,5),'m') 

axis([-5 C+5 -7 7]) 

hold off 

figure(2) 

%  

% 

% PLOTS OF FULL SETS (Fig. 5 of AN-384) 

% Plots of Red Signals  

% Originals   zs 

figure(3) 

plot([-5 500],[0 0]) 

hold on 

for k=1:R 

   plot(zs(:,k)) 

end 

hold off 

axis([-5 C+5 -10 10]) 

%  

% Standard Removal of Mean  xs 

figure(4) 

plot([-5 500],[0 0]) 

hold on 

for k=1:R 

   plot(xs(:,k)) 

end 

hold off 

axis([-5 C+5 -10 10]) 

%  
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% Modified Removal of Mean  ys 

figure(5) 

plot([-5 500],[0 0]) 

hold on 

for k=1:R 

   plot(ys(:,k)) 

end 

hold off 

axis([-5 C+5 -10 10]) 

figure(5) 

 

% Single Signal (Fig. 7 of AN-384) 

figure(6) 

plot([-5 500],[0 0],'k') 

hold on 

plot(zs(:,k),'b:') 

plot(xs(:,k),'b') 

plot(ys(:,k),'r') 

  

hold off 

axis([-5 C+5 -7 7]) 

figure(6) 
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