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                               A FUN ANALYSIS – INSTRUMENTATION AMPLIFIER 

 

    We often feel that we must have covered just about every possible 

simple analog circuit, either in our newsletter and/or application notes (as 

well as many complicated circuits).   Recently I needed to explain the 

standard “Instrumentation Amplifier” to a group, and to my surprise, 

discovered that we had apparently not covered it.  How hard could it be – I 

had the circuitry and the “right answer”.  Well, it is easy, but it can fool you 

once or twice first.  It’s fun. 

 

     The “instrumentation amplifier” is a controllable gain differential amplifier 

with very high input impedances.  Recall that an op-amp itself is a very 

high-gain differential amplifier with very high input impedance.  The op-amp 

gain is something like a million to several million, and the inputs draw only 

very tiny currents.  True, the gain is way too high for most applications 

(hence the use of feedback) and rolls off with frequency.  But it is evident 

that, using op-amps, we can make what we need.   

 

     The differential amplifier in Fig. 1 

is basic.  We often use this where 

we only want to expend a single op 

amp, where the gain is fixed (at 

R2/R1 ) and where the input voltages 

V1 and V2 are supplied by low 

impedance sources (such as other 

op-amp outputs). 
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     The input impedances of Fig. 1 for both V1 and V2 are low.  Clearly the 

input impedance (input resistance) at the V1 input is just Rin1=(R1 + R2).  It is 

just a series connection of the voltage divider resistors, and the connection 

to the (+) input of the op-amp does not change anything.   The input 

impedance at the other input (V2) is different (but not generally high either), 

and strangely depends on the input voltages.  Why!   Well, we are 

interested in the current that flows into the upper R1 resistor when a voltage 

V2 is applied.  This depends on the voltage on the (-) input of the op-amp, 

which is the same as that on the (+) input, and thus is: 

 

         V(-) = V(+) = V1[R2/(R1+R2)]                                                                  (1) 

 

So the current is: 

 

         i2 =  (V2 – V(-)) / R1 = [ V2 – V1R2/(R1+R2) ]  / R1                                 (2) 

 

so the input impedance (input resistance) is 

 

      Rin2 = V2/i2 =  V2R1 / [ V2 – V1R2/(R1+R2) ]                                             (3) 

 

     This is a curious equation, so we should make some checks.  Notice 

that for the case where V1=0, the V(+) terminal of the op-amp is effectively 

grounded, and what remains is just an op-amp inverting amplifier (with 

input V2) with input resistance R1 as it should be (a resistor R1 to virtual 

ground).  Equation (3) gives this result.  Rin2 can’t be smaller than R1 ever. 

Notice also that when V1=V2 (thus Vout = 0), equation (3) gives Rin2=R1+R2, 

just the same as Rin1.   This is correct as here we would have the upper R1 

and R2 series connecting to ground (the zeroed output).   

 

     Note further the curious fact that the denominator of equation (3) has a 

minus sign and thus can become zero or negative!   The condition where 

the denominator becomes zero is that the input V2 is equal to the 

attenuated V1, thus to V(+), in which case the V(-) input also has this voltage,   
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and no current flows.  Hence the infinite values of Rin2 is justified as no 

current flows.   The values in which Rin2 becomes negative really are the 

consequence of the voltage (and thus the current) reversing sign.  Perhaps 

we should be using magnitude bars on equation (3) although it is likely 

clear what is happening.   

 

     It is clear however that the input impedances are low, very roughly on 

the order of value of the resistors used.   Rin1 is always the sum of R1 and 

R2, and Rin2 could be as low as R1 itself.   In many cases where a 

differential amplifier is being used it is precisely because we want to cancel 

a common-mode signal such as an AC hum which is picked up by the high-

impedance source (like an electrode on the skin).   
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     Since the input impedances in Fig. 1 are too low, the use of additional 

op-amps as buffers (voltage followers) is the next logical step.  Fig. 2 

shows the two added followers.  The equation for the output voltage 

remains the same. 

 

     Using the same approach to buffering, and adding three additional 

resistors we have the instrumentation amplifier structure shown in Fig. 3.  It 

is not difficult to get this analysis wrong. 

 

  

     As suggested, there are plenty of ways to make this more complicated 

than it needs to be.    But as with nearly every circuit of practical purpose, 

there is a “trick” to a much easier solution.   Here it is to note that there is a 

single current  i  passing through the series resistors R3 → Rg → R3 from V4  
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to V3.  Further, these are op-amps with negative feedback, so the (-) inputs 

are the same as the (+) inputs.  The point below the upper R3 resistor is 

thus at V2, and the one above the lower R3 resistor is V1.  To the right of 

this current we just have a standard differential amplifier (Fig 1) taking the 

difference now between V3 and V4.   

 

     Thus we can observe that: 

 

          i = (V2 – V1)/Rg                                                                                                                                (4) 

 

and the drops of this current along the series resistors give:                                                 

 

          V4 = V2 + iR3                                                                                                                                  (5a) 

 

          V3 = V1 – iR3                                                                                                                                  (5b) 

 

while the ordinary differential amplifier is: 

 

          Vout  = (R2/R1)(V3 - V4)                                                                     (6a) 

 

                  = (R2/R1) [  V1 – V2 –iR3 – iR3  ]                                               (6b) 

 

                  = (R2/R1) [ (V1 – V2) + 2(V1-V2)R3/Rg ]                                     (6c) 

 

                  = (R2/R1) [ 1 + 2R3/Rg ] (V1 – V2)                                             (6d) 

 

     So this analysis is simple enough.  It is also perhaps simple to actually 

see what is going on.  Consider that the original differential input voltage is 

forced across the resistor Rg, producing a proportional current.  This same 

current is forced (by the usual op-amp feedback) to also go through the 

entire series R3 → Rg → R3, so the total voltage between V4 and V3 (that 

will be the input to the ordinary differential amplifier) is “spread” or amplified 

by (R3 + Rg + R3)/Rg, which is the gain factor  [ 1 + 2R3/Rg ] inserted in 

equation (6d). 
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     The most useful feature of equation (6d), and thus of the circuit, is likely 

that the gain can be controlled by one resistor, Rg.  Note that with 

differential amplifiers we in general think in terms of the need to set 

resistors precisely and/or to match them (or trim them).   This is because 

we often use a differential amplifier for subtracting a common mode signal, 

and this is a matter of balancing positive gains with negative.   With Fig. 1, 

the circuit will work as long as the R2/R1 ratios in the two legs are the same, 

exact matching of R1 to R1 and R2 to R2 is not what is required.  If the ratios 

match exactly, the “common mode” gain is zero.   That is, if we connect the 

two inputs V1 and V2 together, we always get zero out.   Trimming any one 

of the four resistors in Fig. 1 can optimize the “common mode rejection 

ratio” (usually the most important – not the exact gain). 

 

     With Fig. 3 the need to set an exact gain is relegated to the choice of a 

single resistor, Rg.   The need to match positive and negative gains is the 

same – except that we have more choices.  In one sense, we seem to have 

more requirements with Fig. 3, the matching of the R1, R2, and now the R3 

resistors.  The situation with regard to R1 and R2 is the same as in Fig. 1. If 

we were to obtain perfect matching of the R2/R1 ratios, a mismatch of the 

R3 resistors would upset this.  Looked at the other way, this same 

intertwining of the overall gain convinces us that we need to trim only one 

of six resistors involved.  Note for example that the (-) input to the top buffer 

is restricted to be V2.  If the R3 in the upper leg increases, the gain with 

regard to V2 is increased, continuing in that branch only, and so on.  The 

gain is adjusted by Rg independently. 

 

     When we speak of trimming, we are thinking of reducing the value of a 

resistor to be trimmed to perhaps 95% its nominal value.  Then we put in 

series with it a “trim pot” of perhaps 10% its nominal value.  This allows us 

to adjust the value from 95% to 105%.  Common mode gains is generally 

monitored by connecting the two signal inputs together and applying an AC 

signal.  The output should be small to start with, and we adjust the trimmer 

to zero.    
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