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                                                A  PROGRAM  FOR  A  FLAT  WHITE  NOISE  
 
 

As noted in a recent Electronotes issue (EN#208): 

 http://electronotes.netfirms.com/EN208.pdf 

what would seem to be an obvious procedure to demonstrate the “flat spectrum” of a 

random sequence contained a surprise.  The original idea was that, first of all, we do not 

expect any single FFT (magnitude) of a white noise sequence to be flat.  We would 

however expect an average of magnitudes of many FFT’s to be flatter and flatter as 

more examples are dawn from the ensemble.   Our finding was that this is almost true. 

For a length N random sequence, with the exception of two frequencies, 0 (dc) and fs/2 

(half the sampling frequency), the latter in the case of an even length sequence.  These 

two cases show a dip below flat that amounted to (2)3/2/π = 0.9003163.  That is, the FFT 

magnitudes for k=0 and for k=N/2 (for even N) are only 90% of those for all other 

frequencies.  The EN#208 offered an explanation of the dip in terms of a Rayleigh vs. a 

“folded normal” distribution, which will not be repeated here.  Further in EN#208, we 

showed that the average spectrum can be leveled by adding appropriate correcting 

components at k=0 and at k=N/2 (N even).   The corrections were found experimentally, 

and no “derivation” was offered.    Here we want to refine this correction and offer a 

Matlab function, randf, that is flat. 

     To review, the finding was that, as we anticipate, the FFT magnitude of any one 

random sequence is not in any way seen to be obviously flat (Fig. R1).  By the time we 

average 10 FFT’s, we see some flattening (Fig. R10) and this continues through 

additional Factors of 10 (Fig. R100, Fig. R1000, Fig. R10000, Fig. R100000) and with a 

million in the average (Fig. R1000000) we see a flat result with the two dips to 90% as 

mentioned.   This is the result previously reported in EN#208.   

     In addition to finding that the dips at k=0 and k=N/2 (N even) are very real, and 

finding an theoretical explanation, a proposed solution to the problem was offered.  In 

as much as there were one or two spectral points that were low, it made sense to try to 

add spectral energy at these two frequencies. That is, we wanted to add some dc bias 

for k=0 and an alternating sequence (N even).    
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The figures above were obtained by taking random sequences by the familiar 

UNMODIFIED Matlab command line: 

          w = 2*(rand(1,100) – 0.5) 

     In EN#208 we modified the random signal generator by adding a constant and an 

alternating series  

         n=0:99 

         sq = (-1).^n 

         w = 2*(rand(1,100) – 0.5 – 0.0139) + 2*0.0139*sq  

 

This seemed to work.  However it was not clear where the parameter 0.0139 came from 

– except by trial and error.   We further determined that the parameter was 0.139/√N 

where N was the length of the sequence (N = 100 here).  In particular, no simple 

relationship to more fundamental constants was found, it did not seem to be anything 

we could calculate, and error limits on what it might be experimentally were not 

established.   Here we will look at this a bit more.  The approach remains experimental.        
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     For this note, we decided to take a closer look at what our one free parameter really 

is.  This was a matter of running a lot more random trials.   This was done with a 

program where the random sequences to be tested were calculated as: 

          B = B0/sqrt(N) 

          w = 2*(rand(1,N) – 0.5 + B) +even*2*B*sq 

In this case, we expected the cancellation of the dips to occur for a value of B0 = -0.139 

(or thereabout) based on EN#208.  However, through a failure to pay careful attention 

(!), positive value around 0.139 were tested.   With a large number (63, each of 

10,000,000 random signals) of trials, a least-square linear fit was found (Fig. 1) and 

from that, we found B0 to be 0.13536.  Each of the data points represents about 

10,000,000 averaged trials.  Total computer time about ½ a day.  The additional two 

decimal places were perhaps reasonably justified.  The surprise was that when we 

looked back to EN#208, that number was negative – this one was positive, and they 

were not the exact same magnitude.  So switching the sign was a fortunate error.  

There was more going on here.   
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     Further, we now had evidence that the shape of the curve of the Dip, as a function of 

the parameter B0, is probably something more like a parabola.  We know that the Dip is 

close to 1 at the two values -0.139 and + 0.135, but we also know that when B0=0 the 

dip is about 0.9.   Thus encouraged, we can calculate a wider range of B0, not just 

where we approach a Dip of 1 (as in Fig. 1) and these 65 trials are plotted (red stars) in   
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Fig. 2, along with a least squared fit parabola (green line).  Again, each point is 

10,000,000 trials, and the total computation is about ½ day.   From Fig. 2, we get both 

the positive and the negative solutions.  The parabola, if it is a parabola, is slightly 

skewed to the left as shown.   A summary of the numerical values is shown in the table 

just below Fig. 2. 

     This is what we know.   We know enough to write a new random function. There is 

much more we don’t know.   

     Here is some code: 

     % randf 
     % produces a length N random signal with a uniform distribution 
     % close to -1 and +1 with DC and AC "bias" such that the DFT  
     % spectrum is not reduced by 90% at k=0 and k=N/2 (N even). 
     function x=randf(N) 
 
     B=0.13536/sqrt(N); 
     even=0; 
     sq=(-1).^(0:N-1); 
     if N/2==floor(N/2) 
         even=1;  
     end 
              x=2*(rand(1,N) -0.5 + B) + even*2*B*sq;   
 
    

     This function randf  is not a plug-in replacement for rand.  It is defined to replace the 

usual 2*(rand(1,N) – ½).   Putting this into the program that produced the “R” figures 

results in an analogous sequence, of which we only want to print a few here. 

      Fig. F1 is very much like Fig. R1 in that neither shows any degree of flattening or 

anything special at k=0 and k=50.  Looking at Fig. R1000 (less so Fig. R100), we see 

that the dips at k=0 and k=50 are appearing.  In comparison, we see nothing special 

happening in Fig. F1000.   Finally, we compare Fig. F1000000 to Fig. R1000000, and 

we see what is essentially absolutely flat in Fig. F1000000 while the dips at k=0 and 

k=50 were well established in Fig. R1000000.  To the accuracy of plotting in these 

figures, somewhat fewer that the five digits used in the programs would likely be 

sufficient. 
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SUCCESS ?  Some Answers, More Questions. 

    In as much as we set out to achieve a program for a flat white noise, we have 

succeeded.  But we kind of had this practical tool at the end of the EN#208 

presentation.  Here we have made a few steps toward a better understanding of what is 

going on – but have just as certainly found new questions.  The fact that the parameter 

we need to flatten the spectrum is found to be double valued, is interesting.  But we 

don’t know how to calculate it (them) from more fundamental considerations.  This may 

be a parabolic object as in Fig. 2 (despite appearing skewed – which may be a 

numerical consequence), but we neither know how to derive an equation for the 

parabola, or why it should come out that way. Lots of projects like this!   

 

 

 

                                                                                 AN-378 (10) 


