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                                        FALSE  IDEAS  ABOUT  RANDOM  SEQUENCES  
 
 
 
We all know how to generate random sequences of numbers.  We could toss coins or 
throw dice, or even measure emissions from a radioactive source.    For practical 
purposes (computer games, music synthesis, even Monte Carlo calculations), we are 
often quite comfortable with pseudo random generators.  Baring a “dissection” of the 
pseudo-random algorithm, the numbers in a sequence are all a surprise. So here is 
what many people think they know: 
  
         (1)   Samples of a random generated sequence are white noise.  
  
         (2)   There is something “special” about such random sequences. 
  
         (3)   The random sequence has a mean of zero.  
 
         (4)   The random sequence has no linear (or other) trend. 
  
         (5)   The spectrum of our random sequences is flat.   
  
         (6)   You can get a good idea about whether a sequence is random, or not, 
                 by looking at it.  We are good at that judgment. 
 

  
      Let’s try a sequence.     Suppose we use Matlab to generate a pseudo-random 
sequence with their rand function.     Specifically, since rand gives us a uniform 
distribution between 0 and 1, we usually offset this by -1/2 and double it for a sequence 
between -1 and +1    Choosing a length 100 sequence:  x = 2*(rand(1,100)-0.5).  This is 
the most commonly suggested approach.  Fig. 1 shows the sequence as a stem plot. 
Overall, it looks pretty much like what we would expect of 100  random samples.   
 

     Things perhaps look a bit different in the connected plot of Fig. 2 where straight 

segments are plotted between samples with the stems gone.     This is likely 

misleading, but the plot does much more closely resemble traditional graphs of 

random signals of the type often seen in physics and engineering books, at least 

before discrete rather than continuous-time signals were the usual finding. 
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     Fig. 3 is a revealing departure from Fig. 1 because here we plot (stem) just the 

signs (+1 or -1) of the samples in the sequence of Fig. 1.   Accordingly we have a 

result that looks like (and is) analogous to the coin-flip experiments plotted in books 

on probability and statistics.   We may immediately think we see problems at this 

point.  The number of heads is not the same as the number of tails.   Indeed there 

are six more tails.   Well, we remember now our readings about this.   It’s NOT 

anticipated that they will be exactly the same.   But in one place (green) there are 

six tails in a row, and that seems unlikely.   In another place (red), there are 19 

samples with exact symmetry in time.   In yet another place (blue) there are 10 

samples alternating.   Way too much order!    

 

     Yet no special effort was made to find this example.  This was the fifth run of the 

program, the first four were expended getting the code right.   Subsequent runs 

turned up different, but seemingly similar remarkable runs and symmetries - 

particularly as they were revealed by just plotting the signs (heads/tails).   Are these 

things possible, or perhaps even expected?  Of course.  Most of us have read 

enough to know that no sequence with obvious patterns is any more or any less 

likely than one with less apparent order.   
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    But isn’t there a temptation run rand again, and perhaps again and again?   We 

might get something that “looks” better.   Or more simply, why not just go in and 

“edit” out the embarrassing accidents?   In a long run of 6 tails, why not flip one or 

two of those tails to heads?  And Just changing one sample would destroy 

symmetry.   After all, isn’t the sequence random anyway?  Does it matter, therefore, 

if we change a few samples?   They could have occurred without any intervention, 

after all.  Aren’t we just making it more random?  

 

     The tendency to manipulate a randomization sequence for an experiment 

(typically medical, psychological, or perhaps opinion sampling) is dangerous, 

particularly as outcomes are marginally significant.  If we are using a random 

sequence to “surprise” a test subject, it is reasonable to suppose that the human 

tendency (to hold a run of six straight tails as “suspect”, for example) applies to the 

test subject as well as the experimenter.  To any attempt we make to arrive at a 

“better” randomizer (from selecting sequence that just seem better, to outright 

editing a head into a “too-long” run of tails) will serve to bias an experiment in favor 

of joint (false) expectations.  Experimenter and subject both knew a “head was 

overdue” and adjusted accordingly.   A miss becomes a hit.   

 

     Continuing, the fact that there are more tails than heads in Fig. 3 tells us that 

that sequence is not zero mean.  Well, perhaps the actual sequence of Fig. 1 is?  

Nope, the mean is -0.0078.   Why would we have expected zero mean?   Perhaps 

because we took a uniform distribution between 0 and +1 and subtracted 

(intentionally) 1/2.   But this 1/2 is the mean of a very very long sequence – not of 

any more usual length.  We then perhaps quickly accept a non-zero mean, a DC 

term, because we know we wanted the overall spectrum to be flat, so it had to have 

some non-zero DC.   The argument starts to almost sound convincing.    

 

     So, is the spectrum really white (flat)?   In Fig. 4 we look at the sequence in the 

frequency domain by using the FFT. Here we need to plot only the first half of the 

FFT magnitude (k=0 to k=50), since the sequence is real and its magnitude is 

symmetric.  The result is not flat.   Have we failed?   We can try another sequence, 

and it too will not be flat, but it will be different from Fig. 4, and soon we recognize 

that the notion of a flat spectrum relates to expectation drawn from an ensemble, 

not to any one example.   If we want to see flat, we need to average.   More about 

this later. 
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     We know the samples of Fig. 1 were obtained using a pseudo-random algorithm.  

Could they have come from anywhere else?   Is it possible they could have been 

obtained from a bandlimited waveform – in fact, one with a finite number of discrete 

frequencies?   The use of the FFT answers these questions in the affirmative.   The 

FFT can be viewed as N equations in N unknowns (N being the length of the 

sequence).  The FFT converts N given time domain samples to N frequency 

domain samples.  The amount of information is conserved.  [The FFT is in general 

complex, so it is really 2N numbers.  But the time-domain is real, so the FFT has an 

even symmetric real part and an odd symmetry imaginary part, so that’s N unique 

numbers.  Just had to mention that.] 

 

     Can we easily view the bandlimited waveform corresponding to Fig. 1?   Yes, by 

using the FFT to interpolate additional values between the 100 samples we have.  

This is done by zero padding the FFT in the middle and taking the inverse FFT.   

Fig. 5 shows the result – zero-padding by 10:1 (900 zeros added to the center of 

the FFT).  Here instead of plotting samples with stem, we just use plot to better 

suggest a continuous waveform (and to avoid clutter).  At the same time, the 

original samples are shown as circles.   This is very interesting to see it this way.  
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     Fig. 5 is still a bit cluttered.  Consider instead the length-20 random sequence, 

the circles shown in Fig. 6.  These are not new samples, but just the first and every 

fifth sample from Fig. 1,   These we interpolated with the FFT method by 20:1.  In 

this case, we see how remarkably smooth a bandlimited waveform looks, although 

it came from random samples.   Note that a rough structural similarity to Fig. 5 

remains here. 

 

     Speaking of two sides of a coin, we can compare Fig. 1 with Fig. 5, and perhaps 

suppose that they are very different.   One (Fig. 1) is supposed to be random, while 

the other (Fig. 5), being itself an inverse FFT, is composed of sinusoidal 

components.    In fact, the two are very much alike.  For example, we can play them 

using Matlab’s sound and they sound basically the same (a short “burp”).   So, on 

the one side of the coin, we are less impressed with the randomness of a so-called 

white noise sequence, and on the other side, a signal composed of (short) 

sinusoidal components may be more random than we suppose. 

 

     But let’s be clear about this.  The 20 samples (red circles) in Fig. 6 are random 

and independent.  They were in fact obtained as every fifth sample of Fig. 1.   

[Equally well, we could have obtained a test sequence by using 2*(rand(1,20)-0.5 )].  

Here we preferred to maintain the connection with Fig. 1.  If on the other hand we 

had taken the FFT data of the sequence, and pretended that we just made that up 

as the sum of 11 sinusoidal components (counting dc), and sampled it, we would 

have the same 20 samples.  What we actually see as most interesting in Fig. 6, is 

probably the blue curve which we see as smooth (bandlimited) – and it seems to be 

continuous.    It’s not of course.  We interpolated the random samples 20:1 and 

then plotted the 400 points as connected.   The interpolated points are of course not 

random, as they are highly correlated with each other, and with the original 

samples.   

 

     An additional point is that it is not possible to sample a white noise signal and 

obey the sampling theorem restriction.  We understand a white noise spectrum to 

be flat from 0 (dc) to infinity.  Accordingly, it can’t possibly be bandlimited, so any 

sampling frequency is not high enough.   The sampled spectrum would be folded 

over and over, back and forth, forever.  True enough, it would remain flat in the 

added overlaps.  Any non-white spectrum with a systematic roll-off could likewise 

average much flatter than the original. 
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IS THE SPECTRUM FLAT? 

As noted in a recent  Electronotes issue: 

 http://electronotes.netfirms.com/EN208.pdf 

what would seem to be an obvious procedure to demonstrate the “flat spectrum” of a 

random sequence contained a surprise.  The original idea was that, first of all, we do not 

expect any single FFT (magnitude) of a white noise sequence to be flat.  We would 

however expect an average of magnitudes of many FFT’s to be flatter and flatter as 

more examples are dawn from the ensemble.   Our finding was that the spectrum 

average, in generals, becomes flatter.  Unexpectedly however, there were two 

frequencies that remain lower than the plateau achieved by the others. These are the 

frequency 0 (k=0, or dc) and half the sampling frequency (k=N/2 which is only present 

as a DFT frequency when N is even.   Fig. 7 shows the average of 1000 spectra while 

Fig. 8 shows the average of 100,000 spectra.  The dips below the plateau comes out to 

23/2/π or about 90%.   The referenced EN#208 presents this idea and offers 

explanations.   More information will appear in the App Note to follow this one. 
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TREND LINES ? 

We can take two views of a random noise.  The first is that we want a random signal for 

some purpose.  Perhaps we want it as raw sound material for generating a snare drum 

sound for music synthesis.  Perhaps we want it as a pure chance element for a 

computer game.  Perhaps we want to use it to make many many random trials to 

estimate a probability we can’t easily calculate directly.   Perhaps we are processing 

unknown sequences and want to process random signals as a baseline test.   We want 

random numbers – a valuable product. 

     The other view is that we don’t actually want a random signal, but that a random 

signal has intruded in our real world.   For example we have measurement errors, and 

choose to treat the errors as random (there are many kinds of measurement errors 

however).  In such a case, the errors are thought of as “noise”, and we seek ways of 

removing the noise from the “signal”.   It should go without saying that if there is actually 

no signal, a proper noise removal procedure should yield zero.   Types of noise removal 

include averaging (including moving averages, for examples), which is filtering; and 

curve fitting (such as least squares), which is more a modeling of the signal.   These do 

not always yield clear results.   
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     So there might be something “real” that is going on.   It might be stock market plots, 

temperature plots, weekly sales plots, or something like that.  Let’s assume the data 

sequence has an underlying (although not obviously visible – like visible “by eye”) linear 

trend that is well-hidden by an apparently random noise.  Can we dig this signal out?   

Perhaps we decide to try a “linear regression” or first-order least squares fit.  The 

question is: does such a result mean anything?   Quite possibly not. 

     It is often wise to test any ideas by using simple test cases.  If we propose an 

experimental test that a dropped ping-pong ball fall to the ground, perhaps we start by 

dropping ball bearings to see if gravity is working today.  If we have a signal processing 

tool that is supposed to give us a spectrum, we might ask what happens if we test it with 

a sinewave signal.  If we are looking for a linear trend, we might well start with a signal 

that we know has a particular trend (a straight line with a non-zero slope) or one which 

we suppose has no trend (thinking of a random signal).        

     We will not be overly surprised to find that a random signal has a linear trend.  

Clearly a length-two random signal has a linear trend: the straight line that connects the 

two points.   If we have many points in our random signal, in general the least square 
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best fit would NOT go through any one of the points, let alone all of them.  How badly 

could we be misled?  One answer might be found by investigating how much a trend 

line varied for different starting and stopping points and/or among different random 

examples.   If we find trend lines having slopes that are themselves random and equally 

likely to be positive or negative, we might well conclude that random signals possess 

trend lines, but they don’t mean anything.   If we found groupings of similar trend lines, 

we might conclude something is wrong with our supposed random signals.   

     Fig. 9 shows a length 100 random signal from 2*(rand(1,100) – 0.5) along with four 

choices of trend line.   Keep in mind that any trend lines we find are real, but spurious.  

In Fig. 9 we see the long red line, which corresponds to the full 100 points.  So the 100 

points taken as a whole do have a trend (a negative slope in this case).  Another 

interesting case is the short green line, the trend between samples 6 and 7.  In this 

case, since there are only two points, the squared error can be made to be zero by 

going exactly through the two successive points.  We can envision similar high slope 

trend lines between all successive points, with both positive and negative slopes.  In 

general, a longer sequence will have shallower slopes.     Also in Fig. 9 we show a 

length 20 sequence in the middle (blue) and a length 10 sequence (short red line at 

end).   Clearly any trend line that does not involve a full sequence, but only those near 

the end, is suspect.  We already know that the slopes will be (in general) greater for 

shorter segments, and the sign obtained often changes with the choice of starting 

points, not just the ending point. 

     The fitting of trend lines to noisy data is often used predictively.   As such, we need 

to make use of the most recently available data.  In addition, we use older data, but how 

do we decide how far back to go?   This is a most difficult question, unless we want to 

manipulate a result, in which case, a starting point could be obtained that gives a result 

favorable to our preferred prediction!   A choice that is not so far back as to include what 

might not be reliable data, but far enough back that trend lines may be relatively stable, 

would be a happy circumstance.   Fig. 10 shows the same random sequence as in Fig. 

9, but now shows trend lines starting at samples 0, 5, 10, 15, 20, 25, 30, 35, 40, and 45.  

Fig. 11 shows just the trend lines, and Fig. 12 plots the slopes.  This is a useful 

demonstration example, but is in no sense typical of anything.  It would be easy to have 

different runs with all upward or all downward trends, not the mixture of trends shown 

here.   The lesson here is that there can be a great deal of variability.   Here we are 

talking about test signals known to not intentionally include any trends. 
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      On the flip side, if we are trying to extract a linear model for noisy, real data, we 

might be quite happy if we already “see” the trend in the plotted data, and if we 

consistently calculate roughly the same slope for various lengths and endpoints.  

Otherwise – otherwise.   

     To summarize, we can and should test our model fitting (trend lines) to see how 

much of a trend we get accidently with random data.   When we know or strongly 

suspect that trends are real, we can make fits, and using standard statistical methods, 

make calculations of how much confidence we place in the result.   
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