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                          MOVING AVERAGES AND SINGLE SINEWAVE CYCLES 

 

 
Moving average filters have a well known frequency response in the form of a periodic 

sinc, so we know what frequencies are to be nulled out.  Further, single cycles (or an 

integer multiple of cycles) of a sinusoidal waveform have samples summing to zero.  

Hence they all are nulled in any average.  However, single cycles can be nulled in cases 

where a corresponding periodic waveform is not.  This leads to some interesting insights.   

 

SINGLE CYCLES: 

 

     Consider a sequence of numbers that corresponds exactly to one full cycle of a 

sinusoidal waveform.  What is the sum of these samples?  If there are an even number of 

samples, it is obvious that the sum is zero (Fig. 1a), as for each positive sample there is a 

corresponding negative sample.  If we move to an odd number of samples, this is still true 

since the first sample is zero and the remaining eight balance (Fig. 1b).   

 

 

It remains true but less obvious for an even number of samples but with a non-zero 

starting phase (chosen as π/13 here – Fig. 1c).  For the case of an odd number of  
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samples with a starting phase (chosen as π/13 here – Fig. 1d), it is still true but far from 

obvious and we don’t see pairwise cancellations.   It is easy to run many computer cases 

to convince yourself that it is true.  Something like 1000 Matlab examples of  

 

               s=sin(2*pi*[0:(N-1)]/N + ph)  

 

followed by sum(s) with random integer N and random phase ph should convince us. 

     In order to gain some notion of how the most dubious case (odd number of samples 

and a non-zero phase) sums to zero, we can use trig identities for a length 3 case.  For the 

example of Fig. 2, we choose N=3 and ph=π/13.    In Fig. 2a we have the case of a length 

 

                                                                  AN-375 (2) 



3 sinewave where the phase starts at zero, and the fact that the three samples add to zero 

is obvious from the symmetry.   In Fig. 2b, we have chosen a non-zero phase, and  

symmetry is lost.    

     For the general case of exactly three samples per cycle and a phase angle α, we want 

to sum: 

         S =  sin( α ) + sin( 2π/3 + α ) + sin( 4π/3 + α )                                                          (1) 

We can use the trig identity for the sine of a sum: 

          sin(x+y) = sin(x) cos(y) + cos(x) sin(y)                                                                     (2) 

 and we thus get a total of five terms: 

      S =  sin(α) +sin(2π/3)cos(α) + cos(2π/3)sin(α) + sin(4π/3)cos(α) + cos(4π/3)sin(α)   (3) 

But since sin(2π/3)  = -sin(4π/3), (as in Fig. 2a for example) two of the terms cancel: 

         S =  sin(α)  + cos(2π/3)sin(α) +  cos(4π/3)sin(α)                                                       (4) 

And further since cos(2π/3) = cos(4π/3) = -0.5, we get: 

        S =  sin(α)  [ 1 + 2cos(2π/3) ] = 0                                                                               (5) 

which shows the sum for three samples per cycle is zero regardless of the choice of α. 

     While not a formal proof, we feel we have established, through several avenues, that 

the sum (and average) of samples taken this way is always zero. 

 

A MOVING AVERAGE FILTER 

     A moving average filter takes the sum of N consecutive inputs and divides by N.  We 

are concerned here with when this average is zero and when it is not, so we will be 

content to take either the sum or the average.  The frequency response for the moving 

average filter  is given by (see EN#197 (6) for example):  

                H(f) = (1/N) e-j(N-1)πf  [ sin(Nπf) / sin (πf) ]                                                            (6) 

which is the familiar Dirichlet function on “periodic sinc”.  We note that the function has 

zeros when f = m/N [ for sin(Nπf) = 0 ] for m not zero or an integer multiple of N.  

Accordingly, we think we understand that these frequencies are rejected by a moving 

average filter.  On the other hand, we arguing that single cycles will be rejected for any  
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length moving average (easily seen as long as the length is perhaps several times longer 

than the length of the single cycle input so that we can see the zone of zeros in the middle 

of the output).   Accordingly there are two ways a particular frequency (or apparent 

frequency) can be rejected.   These cases will be illustrated below. 

 

TEST CASES   

     Here we will employ three different inputs, and two moving average filters.  The inputs 

are: 

     s1     12 samples of a sinusoidal waveform of frequency 1/12=0.08333…(one full cycle) 

     s2     s1 repeated 10 times, 10 full cycles, 120 samples 

     s3     120 samples of a sinusoidal waveform of frequency 5/51= 0.0980….. 

And we will have moving average filters of length 48 (h1), and of length 51 (h2).  For the 

experiment, we will use the moving sum rather than the average. 
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     Fig. 3a shows the output for the case of the single cycle, s1, and the length 48 moving 

sum, h1.  The output is the convolution of the two.  We note a length 12 beginning 

transient and a length 12 ending transient, as expected.  Recall the s1 is time reversed in 

the convolution.  In between the transients we get all zeros as we anticipated.  So a 

moving average does reject a single cycle.  It is true here that the frequency 

1/12=0.083333… is the fourth zero of the frequency response of the length 48 moving 

average.   But see the next case. 

 

 

     In Fig. 3b, we have a case that is apparently very similar to Fig. 3a.   Here the moving 

average is length 51 and accordingly it’s zeros are integer multiples of 1/51.  Clearly1/12 is 

not an integer multiple of 1/51.  The transients are the same, and the middle region is 

zero. So still the single cycle of 1/12 is rejected, and we clearly understand this as 

samples cancelling each other.  Clearly the zeros of the moving average are only part of 

the story. 

     In the next test case, shown in Fig. 3c, we use the s2 input and the h1 filter.  That is the 

input becomes a full ten cycles of the sinewave of frequency 1/12, or 120 samples total, 

somewhat longer than the filter itself.  Here we are trying to see what happens when we  
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think of the input as not a short event (one cycle) but rather more of a steady state 

situation.  The result is curious.   First note that we do have the zero steady state between 

two more extended transients.  Here it is still possible to see how 48 samples total (four 

cycles) always cancel in pairs, just as we saw how 12 samples (one cycle) did.  It is also 

true that the moving average filter is not influenced in this center (steady state) region by 

the finite length (120 samples) of s2.  For this region, it might as well be the case that the 

sinusoidal goes on forever.  Accordingly, we appreciate the null of the moving average at 

1/12.   We note that the transients are four time linger than the original case.  We see four 

“cycles” to the transient as it takes 48 samples (four cycles at 1/12) to “load” the filter. 

     In our three examples so far we have not seen anything, other than transients, get 

through the filter.  However if we take the length 51 moving average and put the length 

120 sinusoidal of frequency 1/12, something should come through.  Fig. 3d shows this 

case.  The transients look similar (slightly longer) to Fig. 3c.  But indeed there is a 

significant response in the middle.   Why?  First, there is no way 51 samples of a sine 

periodic with period 12 can cancel.  Secondly, the moving average itself has no zeros at 

1/12. 
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ZEROS OF THE INPUT! 

     The cases seen in Fig. 3c, Fig. 3d, and Fig. 3e present our usual notion of a filter with 

zeros at certain frequencies blocking these same frequencies while letting other 

frequencies pass. Here while the input sequences are not of infinite length (to be 

considered pure frequencies) they are much longer than the filter’s storage and thus it 

makes no difference. 

So the special cases here are Fig. 3a and Fig. 3b.  We have argued from time-domain 

considerations that full cycles of any sine wave should cancel in a moving average, and 

they do.  Accordingly, while the moving average filter has zeros for certain frequencies, the 

frequency of any sinewave cycle is irrelevant.  Indeed, it does not even have to be a 

sinewave of course.  Any sequence that sums to zero, and which fits within the length of 

the moving average, will give a zero steady state. 

This view tends to be the standard one of considering the (longer length) “moving average 

filter” to be the filter in this case, with the (shorter length) “input” being the input.  In as 

much as the output here is the convolution of two sequences, and we know that the 

convolution can be done in either order, we can consider the situation to be sine wave 

samples (or whatever alternative balanced choice we make) as the filter with an input of a 

train of constant sample (Fig. 4). 

 

 

 

     All the arguments relating to time-domain cancellations, in pairs, or overall, that we saw 

above apply to this reversed situation.   It is just a different perspective.  Note that here the 

input is a train of samples equal to 1, and the length is longer than that of the impulse 

response, so in the frequency domain, the input is of frequency zero. 
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     The zeros of the 12 samples of the sine waves, as an impulse response as in Fig. 4, 

are shown in Fig. 5.  Indeed it looks like a complete “ring” of zeros on the unit circle except 

for the frequencies of +1/12 and -1/12, as we expect.  In contrast, the zeros of the input 

are on a ring except for z=1 (DC) as in Fig. 6. 

 

We note that the zero at z=1 in Fig. 5 would mean that DC is blocked.  Are the other zeros 

essential to the cancellation?   That this is not true can be seen from the time-domain 

arguments, or by just looking at another case where the impulse response values sum to 

zero (Fig. 7). 

 

So we note that this case has a zero at z=1. 
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ZEROS OF THE CONVOLUTION 

Having now shows the more-or-less reciprocal relationship between the input and the 

filter, we are in a position to recognize that what matters here is the fact that the output in 

either case is the time-domain convolution of the two component sequences, and as such, 

the frequency domain descriptions multiply, and the zero plot of the convolved sequence 

includes all the zeros of both.  In Fig. 8 we show the zeros resulting from the convolution 

of a length-12 sine sequences (as in Fig. 7a) with a length 29 moving average (similar to 

Fig. 6, except 28 zeros). The zeros of the moving average are shown in green, and those 

of the sine sequence are in red. 
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ZEROS OF UNBALANCED SEQUENCE 

As a “loose end”, we have not really shown an example of the zeros of a sequence that 

does not sum to zero.  Instead, we claim (Fig. 5 and Fig. 7b) that balanced sequences 

have a zero at z=1.   Fig. 9a shows an unbalanced sequence, 12 samples of a sequence 

of frequency 12/14.  It represents two cycles short of a full cycle and the samples sum to 

1.2157.  The plot of the zeros (fig. 8b) shows no zero at z=1. 
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