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            INTERPRETATION OF DFT AS ONE FREQUENCY SINUSOIDAL WAVEFORMS 
 
 

1  INTRODUCTION 
 
      A length-N time sequence x(n) has a length-N DFT (FFT) X(k) and nearly everyone 
knows that we are to interpret the DFT as a frequency-domain version of x(n).   Exactly 
how?  If x(n) is a sinusoidal waveform and if there are exactly k0 full cycles in x(n), then 
X(k) is non-zero only for k=k0 and for k=N-k0 (Fig. 1).  Otherwise, in the general case, all 
X(k) are non-zero – the phenomenon called “leakage” has occurred (Fig. 3).  
 
{Note that this is k0 cycles in N samples, generally from n=0 to n=N-1.  A sample taken at 
n=N in this case would be the first sample of the k0+1 cycle.   Nor is it necessary that any 
or all of the k0 cycles have the same actual samples as any other cycle.  It’s only the total 
number of cycles in the N samples – not the exact timing of the samples within any one 
cycle (Fig. 2).                               

    
                             Fig. 1    Exactly three cycles – perfectly resolved 
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                  Fig. 2   The samples within the cycles need not be periodic within 
                                   all the cycles – still have perfect resolution 
 
 
 

2   SELF-WINDOWING 
 
     The key to understanding the “leakage” or lack of leakage is to recognize that the DFT 
is self-windowing, since it is defined as: 
        
                            N-1 

            X(k) =       Σ      x(n) e-j(2/N)nk                                                                                  (1) 

                            n=0 
 
In consequence, we heed to consider the rectangular window: 
 
           r(n) =   1     n=0,1,2,….N-1             (0 else)                                                            (2)  
 
which has a DTFT                 
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                 Fig. 3   Having an non-integer number of cycles results in leakage 
 
 
 
                            ∞    

          R(ejω)  =    Σ   r(n)e-jnω 

                           n=-∞    
 
                              N-1    

                         =    Σ   e-jnω 

                              n=0   
                       
                            = e-j[(N-1)/2]ω  [ sin(Nω/2) / sin(ω/2) ]                                                        (2) 
 
 

which is a “periodic sync” or “Dirichlet kernel,” periodic in 2, with zeros at ωm=(2/N)m 
except at integer N, where it is of magnitude N (Fig. 4).  Note that the spacing of the zeros 

is the same as the spacing of the DFT harmonics: ωk = (2/N)k. 
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     It is convenient here to use a frequency measured as kc (continuous k) which is the 
same as the DFT index k, except k is limited to integers.  It is normal to talk about DFT’s 
in terms of frequencies k, where k is an integer.   But something like k=3.2 does not make 
sense.   Here kc=3.2 is perfectly sensible.  Note that: 
 

        kc= (N/2)ω                                                                                                               (3) 
 
so we can write: 
 

     R(kc) = e -j [ (N-1)/N ] k
c  [ sin(kc) / sin(kc/N) ]                                                                 (4) 

 
Fig. 4 shows the magnitude of R(kc) calculated for kc=0 to N with N=20 for this example.  
This is the familiar periodic sinc.  Fig. 5 shows the real and imaginary parts of this same 
R(kc).  Note that the “peaks” of this response are at 0 and at multiples of N. 
 
     In an actual spectral analysis application with the DFT, the self-windowing of the DFT 
is equivalent to multiplying the data by a rectangular window, and accordingly the 
Discrete-Time Fourier Transform (DTFT) of the full-length signal is convolved with the 
periodic sinc.  Initially we can assume cosine phase for the full-length signal, so it is 
represented by two real non-zero lines, one at ko, and the other at N-ko=-ko, where ko 
                     

 
                 Fig. 4  The magnitude of R(kc).  See also Fig. 5 for the real and imaginary 
                        components corresponding to this magnitude plot. (length 20) 
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                  Fig. 5   The real and imaginary parts of R(kc) corresponding to the  
                                magnitude plot of Fig.4 
 
 
is the value of kc that corresponds to the frequency of the cosine.    That is, ko is the 
“answer” we are looking for.   The general notion of what we are doing can be seen in Fig. 
6 where we have taken Fig. 4, offset it by +ko and by –ko (ko=3.3 for the example) and 
plotted the two magnitudes.  This only illustrates the idea – we can not add the 
magnitudes to get the magnitude of the sum. 
 
     Fig. 7 shows the correct way to achieve the convolution result – the sum of the two 
displaced periodic sinc functions.   That is, we take the complex form of R(kc), displace 
and add these, and then take the magnitude.    Fig. 8 shows the corresponding real and 
imaginary parts.    
 
     In addition to the plot of the convolution sum in Fig. 7, two additional results are 
shown.   The open circles are the values of the sum at integer values of kc.  That is, using 
the traditional notion of k as the DFT index.   These are of course on the line.  Overplotted 
at stars are the magnitude values of the DFT of the sequence, obtained independently of 
the calculation of R(kc) as we would get using equation (1).  These are, exactly in the 
center of the circles as we expect and hope. 
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                   Fig. 6  The periodic sinc functions are offset (rotated actually) by the   
                         convolution process.   We can not add these magnitude functions. 
                         (see Fig. 7 below) 
 
 
     Much as we used Fig. 4, involving just the magnitude, to suggest a procedure, Fig. 7 is 
suggestive of success, but not a fully-convincing demonstration.  Fig. 8 shows the real 
and imaginary parts of Fig. 7, with the real and imaginary parts of the directly-calculated 
DFT, X(k), overplotted as stars.  We see an exact match.    
 
     The graphs presented indicate that we understand the DFT “leakage” problem in terms 
of convolution of the DTFT with the DTFT of a rectangular window, followed by sampling.  
We want to follow up these graphical with equations and Matlab code to support the 
results and to suggest further investigations. 
 
 

3    THE EQUATIONS 
 
     The summation leading to Fig. 7 and Fig. 8 is: 
 
                 D(kc) = R(kc-ko) + R(kc+ko)                                                                          (5) 
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                Fig. 7   Summation of periodic sincs at kc=ko=3.3 and kc=20-ko=16.7. 
                         Samples at the integer points are shown as open circles, but these 
                         open circles are then “filled” by the stars, which represent the direct 
                         calculation of the DFT.   Here we are plotting magnitudes. 
 
 
Plugging these offsets into equation (4) leads to figures (6) and (7).  To be general, we 
need to assume an arbitrary phase, relative to cosine, so the summation becomes: 
 
                    D(kc)  =  ejφR(kc-ko) +  e-jφ R(kc+ko) 
 
 

                              =  e-j [(N-1)/N]  (kc-ko) ejφ sin[(kc-ko)] / sin[(kc-ko)/N] 
 
 

                                     +  e-j [(N-1)/N]  (kc+ko) e-jφ sin[(kc+ko)] / sin[(kc+ko)/N]                      (6) 
 
And now, 
  
                  X(k) = D(kc=k)                                                                                                 (7) 
 
offers a complicated equation for the DFT. 
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                Fig.  8   To show that the direct DFT matches the sampled sum of the periodic  
                              syncs, we plot (with stars) the real and imaginary parts separately (not  
                              just the magnitude as in Fig. 7 
 
 
     In addition to verifying that the convolution followed by sampling procedure calculates 
the usual DFT, we have the ability to calculate the DFT of shifted versions of the original 

sequence by modifying the phase: φ  →  φ  + (2/N)kom, where m is the number of 
samples to shift. 
 
 
 

4    SEEING THROUGH THE LEAKAGE 
 
     In general, when all the DFT “bins” are non-zero, we can’t say much about the 
spectrum.  However, if we know it corresponds to a single sinusoidal waveform, we can 
often guess more about it.  For example, looking back at Fig. 3, we notice that the largest 
bins are between k=3 and k=4, suggesting that the actual  frequency is between these 
two values, which is true. Further, the bin for k=3 is larger than the bin for k=4, suggesting 
that the actual frequency is closer to k=3 than it is to k=4, which is also true.   In general, 
if we were to work teratively, we might have good luck in finding a good match to a given 
leakage pattern, and this might suffice if we had only a few cases to identify. 
 
 
                                                                 AN-373 (8) 
 



          In the case of a single sinusoidal, two things are likely to be true.  First, we do not 
know the ideal length of the sequence (for perfect resolution) to be analyzed, and second, 
we don’t know the starting point (the phase).  Thus we might have a sequence x known to 
represent a sinusoidal waveform.  We might choose a length N, and take samples for 
N=0 to N-1.  Or, we might choose some other length N sequence, for example, from N=1 
to N.  That is, the two sequences are shifted by 1.   We know that the two sequences 

would have a phase difference of 2ko/N, although we do not know ko.  It is ko we are 
looking for.  The two sequences will have DFT’s given by: 
 
 

D0(kc)  =         e-j [(N-1)/N]  (kc-ko) ejφ sin[(kc-ko)] / sin[(kc-ko)/N] 
 
 

                                     +  e-j [(N-1)/N]  (kc+ko) e-jφ sin[(kc+ko)] / sin[(kc+ko)/N]                    (8a)        
 
 

D1(kc)  =         e-j [(N-1)/N]  (kc-ko) ejφ ej2 ko /N sin[(kc-ko)] / sin[(kc-ko)/N] 
 
 

                                     +  e-j [(N-1)/N]  (kc+ko) e-jφ e-j2ko /N sin[(kc+ko)] / sin[(kc+ko)/N]        (8b)        
 
where D0 corresponds to  the original sequence, and D1 represents the shifted sequence. 
 
     This mess can be simplified by evaluating these two at kc=0. 
 

D0(0)  =         e-j [(N-1)/N]  (-ko) ejφ sin[(-ko)] / sin[(-ko)/N] 
 
 

                                     +  e-j [(N-1)/N]  (+ko) e-jφ sin[(+ko)] / sin[(+ko)/N]                           (9a)        
 
 

D1(0)  =         e-j [(N-1)/N]  (-ko) ejφ ej2ko /N sin[(-ko)] / sin[(-ko)/N] 
 
 

                                     +  e-j [(N-1)/N]  (+ko) e-jφ e-j2ko /N sin[(+ko)] / sin[(+ko)/N]               (9b)      
 
 
The periodic sinc here is an even function: 
 

                 sin[(-ko)] / sin[(-ko)/N]  =  sin[(+ko)] / sin[(+ko)/N]                                   (10) 
 
and the exponentials can be combined to cosines using the Euler relationships: 
 

     D0(0)  =    2 sin[(-ko)] / sin[(-ko)/N]  cos[ (N-1)ko/N +φ]                                        (11a) 
 

     D1(0)  =    2 sin[(-ko)] / sin[(-ko)/N]  cos[ (N-1)ko/N +φ + 2ko/N]                         (11b) 
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which has ratio      
 

        D0(0)/ D1(0)   =   cos[ (N-1)ko/N +φ]  /  cos[ (N-1)ko/N +φ + 2ko/N ]                (12a) 
 
which can be simplified to: 
 

        D0(0)/ D1(0)   =   cos( ko +φ - ko/N)  /  cos( ko +φ + ko/N )                             (12b)    
  
 
Here D0(0) and D1(0) are easily obtained as the k=0 values of the DFTs X0(0) and X1(0),  
or of the DC values of the sequences, so that is known.  The values of ko and of φ are 
unknown.   One way to find a solution is to search a range of ko and of φ until a good 
match to the original ratio is found.  To get some idea of the correctness of the 
development and the nature of the result, consider that N can be any value, including 
N=1!   This gives: 
 

        D0(0)/ D1(0)   =   cos(φ)  /  cos( 2ko +φ )                                                               (13) 
 
In the case of N=1, the DC values of the DFT’s are just the length-1 sequences 
corresponding to the first samples.  Thus if the sequence involves x(0) and x(1), the 
equation to be solved is: 
 

     x(0) / x(1)  =  cos(φ) / cos( φ  + 2ko )                                                                        (14) 
 
which is obviously true. 
 
     So, the discussion comes down to determining the accuracy, the efficiency, and 
possible uniqueness of solutions to equation (14) or more generally, of equation (12b) – 
an equation in two variables that is also non-linear! 
 
 

5    SEARCH PROGRAMS            
 
     Consider as test input a sequence x(n) that is a cosine of frequency ko and phase φ 
but which has a length greater than the values of N we intend to use, so there is no 
problem in choosing two length N sequences offset by 1 sample.  We easily compute the 
values of the DFTs for k=0, and thus know the ratio D0(0)/ D1(0) = X0(0)/X1(0), where x0(n) 
is the first length N subsequence from x(n) and x1(n) is the offset subsequence.   The task 
here, considering equation (12b) is to find ko and φ.  We search likely ranges of kc and φ 
for a match to the ratio from the DC values of the DFTs. 
 
     Program 1 is a test Matlab program.  We assume that x(n) was pre-computed 
(perhaps to length 1000) and we can thus examine a length N subsequence (and its 
offset).   The basic search is comprised of the nested for loops near the bottom.  Note that 
this nest has an increment of 0.01 for both scan variables (ph and kc) and a test error 
value of 0.0000001, both of which can be adjusted. 
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 PROGRAM 1 
 

 

% findk0.m 

 

function [k0,freq,phase]=findk0(x,N) 

 

x0=x(1:N);  

x1=x(2:N+1); 

  

X0=fft(x0);  

X1=fft(x1); 

  

X0half=X0(1:round(N/2)); 

 

[maxX,kmax]=max(abs(X0half)); 

 

shortout=0; 

% First check for perfect resolution 

% if perfect resolution, DRATIO will be of form 0/0 (very small/very small) 

%       and search will not work 

if abs(sum(X0half)-X0(kmax))<0.0001 

    k0=kmax-1; 

    freq=k0/N; 

    phase=angle(X0(kmax)); 

    shortout=1; 

end 

 

if shortout==0; 

% Now check likely direction of k0 

sh=-1/2;  

if abs(X0(kmax+1))>abs(X0(kmax-1)) 

    sh=1/2; 

end 

 

kmax=kmax-1 

format long 

DRATIO=X0(1)/X1(1) 

format short 

 

for ph=0:.01:6.28    

   for kc= (kmax+sh-0.5):0.001:(kmax+sh+0.5) 

       f=cos(pi*kc+ph-pi*kc/N)./cos(pi*kc+ph + pi*kc/N);  

  

      if abs(f-DRATIO)<0.0000001 

           k0=kc; 

           freq=k0/N; 

           phase=ph; 

      end 

   end 

end 

  

 

end 

shortout 
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    There are two things that are usefully done before the main search.  The first is to 
assure that we do not already have perfect resolution.  The reason this would be a 
problem is that with perfect resolution, the ratio X0(0)/X1(0 is of the form 0/0 which means 
in practical computations that it is the ratio of two very small numbers, which is 
unpredictable and meaningless for our purposes.  Accordingly we look first for perfect 
resolution., and if found, use that for the direct answer. 
 
     Secondly, since the equations do not show the need for a particular N, it might be 
supposed that N should be chosen as small as possible (perhaps even just N=1).  
However, by using a larger N, we can get much more precision with the same search 
effort over kc.   It is easy to find the maximum magnitude of the DFT and the 
corresponding k.  Then by looking at the magnitude one bin below and one bin above, we 
can identify a unit range of kc to search.   In Fig. 3, we would only search kc=3 to kc=4, for 
example. 
 
     While we should probably anticipate additional pitfalls (after all, we have two 
variables!), for the most part, the program works!  If the search resolution is increased, by 
using increments of say 0.001, 0.0002, or even 0.0001, the run time of course increases, 
and there is a danger of hitting a few nearby answers and/or “spurious” answers.  A 
further reduction of the error we allow for the correct ratio can correct this.    
 

 
                   Fig. 9  Right side of equation (12a) for a particular phase guess of 0.25 
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     Some notion of the curious situation here is afforded by Fig. 9.  Here we began with a 
cosinusoidal sequence of frequency 0.13 and phase 0.25, which generated a target value 
of the DC ratio of DRATIO= 0.187724707873 when we choose N=20.  Further, using 
N=20 we find a peak in the magnitude of the DFT at k=3 and the second largest 
magnitude at k=2.   Accordingly, we expect an answer between k=2 and k=3.  But we 
have no idea at all about the phase.   In Fig. 9, we have plotted the right side of equation 
(12a) by guessing a phase of 0.25 (the right answer) and scanning kc between 0 and 5.  
This ratio of cosines predictably is periodic and blows up at certain points (the vertical 
lines which go to infinity and are off scale).  We note that between kc=2 and kc=3, there 
are two crossings of the DRATIO horizontal line.  One is vertical at about 2.3 while the 
other crosses with finite derivative at 2.6.  The one at kc=2.6 is the correct answer.  But 
we cheated – we initially scanned kc knowing the correct phase. 
 
     Fig. 10 shows a second scan where we also show (dotted) the case where phase is 
assumed to be 0.55.   There is no reason why we should reject the intersection at about 

kc=2.5 with this phase.   In general, we would scan phases between 0 and 2, each of 
which we would expect to give plausible crossings of the DRATIO line.  Curiously, the 
program seems to ignore these possibilities.  This has to mean that the error tolerance 
 

 
 
          Fig. 10   In addition to the “correct” phase of 0.25 (solid), here we show a scan  
                    for a guess that the phase is 0.55 (dotted) which also gives what would 
                    appear to be a good answer at about kc=0.25. 
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in the program is so small that only the true solution is within the error.  We note that 
increasing the tolerance and/or decreasing the scan intervals can lead to some spurious 
hits.   
 
     Fig. 11 gives the correct insight into what is going on.  Here we have shown scans for 
the region around the correct answer.  The phase guesses are shown on the plot (with 
the calculated points nearly upright marked with + signs) and kc is scanned at intervals of 
0.002.  For the phase of 0.25, note that we have an exact (within tolerance) solution, 
while the other phases miss by an amount that exceeds the error tolerance (which is 
much too small to appear on the plot.    

 
                 Fig. 11  In the details, we see that the scan for different phases misses 
                         DRATIO by amounts exceeding the specified error tolerance. 
 
 
     We now have more insight into why the program behaves the way it does.  What we 
still have to discuss is why the exact answer is the one that comes out.   It is one thing to 
say why most scans miss, but why does the exact scan hit? 
 
     Well, we have not taken the necessary precautions to “stir” the data.  That is, we 
chose a frequency of 0.13 and phase of 0.25 for x(n) and then scanned a range, and in 
increments that assured hitting these values, so a very small error tolerance blocked  
all but the correct answer. 
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       We can choose these parameters at random.  At the same time, in order to get hits, 
we need to increase the error tolerance.  At some times, this will mean that there are 
more than one answer during a scan.  At others, there may be no answer.  But we also 
know that we have the option of changing N, so we can calculate for a range of N 
(perhaps N=100 to N=200) and average the results.  Preliminary results indicate that we 
can get the frequency to about 1% using this approach, even though the phase is not 
well-determined at all.    Possibly the phase is less easily obtained from the longer DFT 
lengths used here.     
 
    In the end, this has been an interesting exercise, and our simple scan for a solution of 
one non-linear equation in two unknowns probably worked better than we had the right to 
expect.  Almost certainly it could be improved – if it were worth our while. 
 
     The “ghost” hanging about here is equation (14).  Note that this is time-domain and 
tells us only that two samples of a sinusoidal are separated by a phase 2πko, and this is 
not new of course.  We can easily write down a similar equation for x(2).  We would then 
have two non-linear equations in two unknowns – enough equations, but still non-linear. 
The solution would be the same as the starting point for the well-studied “Prony’s Method” 
approach (see for example, EN#179 discussion).  The lessons here are that when we 
know there is only a single sinewave. the DFT profile is revealing, particularly as it greatly 
reduces a search range for the correct frequency.   
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APPENDIX  - THE PROGRAM THAT MADE SOME OF THE FIGURES 
 
 
%  rx.m 

 

N=20 

k0=3.2 

 

ph=0 

ph=ph+(2*pi/N)*k0 

 

kc=[0:.01:N-0.01]; 

Rkc=exp(-j*((N-1)/N)*pi*kc).*(sin(pi*kc)./sin(pi*kc/N)); 

 

figure(1) 

subplot(211) 

plot(kc,real(Rkc)) 

axis([-2 22 -5 22]) 

grid 

subplot(212) 

plot(kc,imag(Rkc)) 

axis([-2 22 -16 16]) 

grid 

figure(1) 

 

 

figure(2) 

plot(kc,abs(Rkc)) 

axis([-2 22 -4 24]) 

grid 

figure(2) 

 

 

x=cos(2*pi*k0*[0:N-1]/N + ph)  

X=fft(x); 

 

kcc1=kc-k0; 

Rkcc1=exp(-j*((N-1)/N)*pi*kcc1).*(sin(pi*kcc1)./sin(pi*kcc1/N)); 

Rkcc1=Rkcc1*exp(j*ph); 

kcc2=kc+k0; 

Rkcc2=exp(-j*((N-1)/N)*pi*kcc2).*(sin(pi*kcc2)./sin(pi*kcc2/N)); 

Rkcc2=Rkcc2*exp(-j*ph); 
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figure(3) 

plot(kc,abs(Rkcc1),'r:') 

hold on 

plot(kc,abs(Rkcc2),'g--') 

hold off 

axis([-2 22 -2 22]) 

grid 

figure(3) 

 

DR=Rkcc1+Rkcc2; 

figure(4) 

subplot(211) 

plot(kc,real(DR)) 

hold on 

plot([0:N-1],2*real(X),'r*') 

hold off 

grid 

axis([-2 22 -22 22]) 

subplot(212) 

plot(kc,imag(DR)) 

hold on 

plot([0:N-1],2*imag(X),'r*') 

hold off 

grid 

axis([-2 22 -22 22]) 

figure(4) 

 

figure(5) 

plot(kc,abs(DR)) 

hold on 

plot([0:N-1],abs(DR(1:100:100*N)),'yo') 

plot([0:N-1],2*abs(X),'r*') 

hold off 

grid 

axis([-2 22 -2 22]) 

figure(5) 

 

[DR(1:100:N*100);2*X]' 

 

D00=(sin(pi*k0)/sin(pi*k0/N))*2*cos(((N-1)/N)*pi*k0+ph) 

D10=(sin(pi*k0)/sin(pi*k0/N))*2*cos(((N-1)/N)*pi*k0+ph+2*pi*k0/N) 

% ? line above 

 

 

 

figure(6) 

stem([0:N-1],x) 

axis([-1 N+1 -1.2 1.2]) 

figure(6) 

sumofx=sum(x) 
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