
ELECTRONOTES APPLICATION NOTE NO. 372

1016 Hanshaw Rd

Ithaca, NY 14850 January 2008

 INTERPOLATION ERROR IN SINEWAVE TABLES

INTRODUCTION:

 The basic notion of interpolation is fundamental to many things we do with
digital signal processing. Indeed it is the mechanism (in either continuous form,
or as a combination of discrete and continuous forms) of reconstruction from
samples. It also appears in rate changing and smoothing procedures, and so on.
Many times in the past we have introduced interpolation by reminding students
that an example of interpolation is the linear interpolation they used when they
needed values for trig functions (or other functions) that were not those actually
found in their printed tables. That is - read between the lines. Of course, in recent
years, with calculators and computers being nearly universal, no one really needs
or uses math table.

 Still the interpolation process can be studies from the assumption that one has
tabulated values and that values in between are needed. In our example here, we
assume that we have a table of values of a sine function for each degree from 0 to
90. [Of course, this "quadrant" is all we need for sines and cosines through the
use of symmetries.] Two simple methods suggest themselves when we need
values that are not exactly integer values of degrees: we could just use the closest
value, or we could use linear interpolation.

{In fact, many other methods are possible. Higher order polynomials could be
used (the straight line being a first-order polynomial). Another popular method
is to start with integer angle just below the desired angle, and then employ the
trig identity (also seen below) for the sine of the sum of two angles, the second
angle being the additional fraction of a degree. In fact, the small angle
approximation to a sine and cosine [sin(x) ~ x and cos(x)~1] meant that you
probably did not need a table of sine and cosine values for the range 0 to 1
degree. And so on.}

 AN-372 (1)

INTERPOLATION ERROR:

 Here our interest is not the method, but rather the computation of the error.
Intuitively, we might expect the error to get smaller as the angle approaches 90
degrees. This is because the difference between values of the sine is greatest at 0
degrees (where the slope is maximum) and least near 90 degrees where the slope
is leveling off. This is exactly what we do see when we use rounding to the
nearest integer (See Fig. 1a through Fig. 1c). Further, the error is sawtooth-like
locally as we expect.

0 10 20 30 40 50 60 70 80 90
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

 Degrees

 Fig. 1a Error with Rounding (see detail for 10 to 15 degree range shown in
 Fig. 1b below). The error is largest near zero.

 AN-372 (2)

 Fig. 1b Error with Rounding (Detail 10 to 15 degrees). Detail of Fig. 1a
 above. Error is linear about integer degrees.

 Fig 1c Relative Error (see programs) with Rounding

 AN-372 (3)

0 10 20 30 40 50 60 70 80 90
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

 The case of linear interpolation (Fig. 2a through Fig. 2c) the error is not totally
what we might expect, however. The error is always negative as we expect: the
straight line is under the curve (see Fig. 3). Further, the error is lobe-like,
maximizing near the center of the interval, as we expect. Also, the error is far
smaller that we had with rounding, as we expect. But - it gets larger as we
approach 90 degrees.

What is evidently going on is that there is a "contest" here. While the difference
between sine values is greatest around 0 degrees, the slope there is very much
like the straight line of the linear interpolator. Around 90 degrees, the difference
between sine values is much smaller, but the curvature away from the straight
line segment is greater. Who wins? Evidently the curvature wins - on evidence
of Fig. 2a.

 Fig. 2a Error with Linear Interpolation
 (see detail in Fig. 2b)

 AN-372 (4)

0 10 20 30 40 50 60 70 80 90
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

-5

 Fig. 2b Detail of Fig 2a, 10-15 degrees

 Fig. 2c Relative Error with Linear Interpolation

 AN-372 (5)

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1
x 10

-6

0 10 20 30 40 50 60 70 80 90
-6

-4

-2

0

2
x 10

-5

 Fig. 3 Error with linear interpretation

We can demonstrate this finding theoretically by a simple procedure. Fig 3 shows
an (exaggerated) segment from d degrees to d+1 degrees. We will find it
convincing to just compute the error e at d+1/2 degrees, essentially looking for
the "envelope" of the error in Fig. 2a. The value of the linear interpolation at
d+1/2 is of course:

 [sin(d+1)+ sin(d)]/2

where the actual sine is sin(d+1/2), so the error is:

 e= [sin(d+1)+ sin(d)] /2 - sin(d+1/2) (1)

We can apply the trig identity for the sine of a sum (used twice here):

 sin(A+B) = sin(A)cos(B) + cos(A)sin(B) (2)

 AN-372 (6)

 and arrive at:

 e = sin(d) [cos(1)/2 + 1/2 - cos(1/2)] + cos(d) [sin(1)/2 - sin(1/2)] (3)

Computing the terms in the brackets we find the constant multiplier of sin(d) to
be:

 Cs = -3.8075 x10-5 (4a)

while the constant multiplier of cos(d) is:

 Cc = -3.3228x10-7 (4b)

So the error is clearly dominated by the term increasing as sin(d). Note that
while we have chosen an interval of one degree between "tabulated" values, we
could have chosen other values, with the same general results.

 Fig. 4 Here we have plotted the theoretical “envelope of the error
 from Fig. 2a.
 AN-372 (7)

0 10 20 30 40 50 60 70 80 90
-5

-4

-3

-2

-1

0

1
x 10

-5

 Fig. 2c is a bit of a curiosity. We see that the relative error with linear
interpolation is essentially just enveloped by a constant slightly less than 4 x 10-5.
This we identify with the Cs constant above, and note that since for equation (3)
we normalized e by dividing by sin(d), we understand that Cs dominates over Cc .
The anomlyous exception near d=0 is understood as the Cc term being divided by
a very small value of sin(d).

SUMMARY:

While it is absolutely no surprise that linear interpolation is a much better
approximation than rounding (by as much as a factor of 200), and that the error
with rounding is greatest about zero degrees, it was likely not obvious that the
error with linear interpolation was largest not about zero, but about 90 degrees.
Likely it is not obvious, either, that the relative error with linear interpolation has
no trend (Fig. 2c).

 AN-372 (8)

PROGRAMS:

The figures for this note were created using Matlab. Nothing beats actual
computer code (even if not in your preferred language) for showing exactly what
was done.

For Fig. 1, Two Programs

function [sa,err,rerr]=p14core(x)

% This function rounds to the nearest degree

% and computes the errors

% and does not prints them on the screen

format long

sa=sin(2*pi*(floor(x+1/2)/360)); % sine of rounded

smat=sin(2*pi*x/360); % correct sine

err=sa-smat; % error

rerr=err/smat; % relative error

% p14global.m

% error on 0 to 90 degrees with rounding

k=1;

e=zeros(1,9000);

er=zeros(1,9000);

for x=0.01:.01:90

 [sa,err,rerr]=p14core(x);

 e(k)=err;

 er(k)=rerr;

k=k+1; end

figure(1)

plot([0.01:.01:90],e)

figure (2)

plot([0.01:.01:90],er)

figure (1)

 AN-372 (9)

For Fig.2, two programs

function [sa,err,rerr]=p15core(x)

% This function does linear interpolation

% and computes the errors

% and does not print them on the screen

format long

xlow=floor(x) ;

xhigh=ceil(x);

offset=x-xlow;

change=sin(2*pi*xhigh/360)-sin(2*pi*xlow/360);

sa=sin(2*pi*xlow/360)+change*offset;

smat=sin(2*pi*x/360);

err=sa-smat;

rerr=err/smat;

% pl5global.m

% error on 0 to 90 degrees with rounding

k=1;

e=zeros(1,9000);

er=zeros(1,9000);

for x=0.01:.01:90

 [sa, err, rerr]=p15core(x);

 e(k)=err;

 er(k)=rerr;

 k=k+1;

end

figure(1)

plot ([0.01:.01:90],e)

figure(2)

plot ([0.01:.01:90],er)

figure(1)

Note: The “c” parts of Fig. 1 and Fig. 2 were obtained by changing the axis

For Fig. 4

% an372fig4.m

d=0:.01:90;

e=sin(d*2*pi/360)*(-3.8075E-5)+cos(d*2*pi/360)*(-3.3228E-7);

figure(1)

plot(d,e)

axis([-5 95 -5E-5 1E-5])

grid

 AN-372 (10)

