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607-266-8492

TWO DIMENSIONAL UNIFORM SAMPLING

1. INTRODUCTION:

Many engineers, when confronted with the notion of sampling a two-dimensional (2D)
function, will quite correctly resort to their familiarity with one-dimensional (1D) sampling to
- see if it can be simply extended. In a very common case (rectangular sampling), this gets
us a long way. Figure 1a shows the 1D spectrum (the FFT) of a sampled signal, which
we have set to rectangular just by typing in ones and zeros. This is X(k) for k=0 to k=63.
In order to get a real signal corresponding to X(k), we have one fewer one for X(k) on the
high side than on the low side. That is, X{0) is not repeated, X(1)=X(63), and so on. The
signal is low-pass. Corresponding to X(k) is a time domain signal x(n), the inverse FFT of
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Fig. 1 Original spectrum (a) and spectrum of sampled signal (b}
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X(k), which we know is a periodic sinc, but do not show. When we sample the length 64
x(n) by a factor of 2, we set every other sample to zero. If we now take the forward FFT of
the sampled version of x(n), we get the result shown in Fig. 1b. That is, we get a sampling
replica in the middle (and lose half the amplitude).
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Fig. 2a An original 2D low-pass spectfum

We can repeat this experiment in 2D, using the 2D FFT's in Matlab. The code for
figures 1 and 2 is given in the appendix. In.the case of the 2D spectrum, we form our
low-pass as a square in the lower left corner. This has natural repiicas in the other three
corners. (See the code for the easy way to do this). We can now take the inverse 2D FFT
of this (a 2D periodic sync) which we need not look at.  We want to sample this by 2, but it
is hard to see how we would do this. We could keep every other line, or every other
column. Later we will look at a lattice that does sample by 2, but for now, let's try
sampling by 2 in both directions (sampling by 4 total). That is, every other line and every
other row is zeroed. Fig. 2b shows the spectrum that results from this sampling. We see
that we get now four replicas. That is, we get the original (four corners) two replicas each
consisting of two pieces on the sides, and a full replica in the middle. Note that the
heights are now 1/4 the original. The point is, hopefully, that this result is exactly what we
likely expected based on our knowledge of 1D and our engineering intuition.
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Fig. 2b The Spectrum of the sampled (by 2 in each direction) signal -

This result is satisfying in that our “guess” as to what should happen seems to agree
with out experiment. What is missing is a systematic procedure for finding how many
replicas there are, and where they are.

2. SAMPLING LATTICES

In doing the experiments above, we have done our sampling by multiplying existing
samples by a sampling function or "lattice" of 1's and 0's. That is, the original samples
are assumed to exist on a grid consisting of all integer positions (in 1D or 2D), and when
we sample, we keep some of these original samples, and set the rest to zero. Thisis
sometimes propetrly thought of as "re-sampling." [We may also note at this point that we
~ can also consider cases where the kept.samples are rearranged so as to compress the
total amount of data by removing the zeros — but not at the moment.]
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For example a 4x4 image “X” can be multiplied by a sampling function or lattice “s” to
form “xs” as:

(1)

a b c d 0 0 0 0 0 ¢] 0 0

e £ g h X 1 0 1 ¢ = e 0 g 0

i 3 k mn ¥ 0 0 0 0 0 0 0

n o q b4 1 0 1 0 n 0 g 0
X s {(lattice) xS

In a more general approach, we might choose s in an arbitrary way so that values need
not be just 1's or 0's. However, we will look at the case of 1's and O's first, and will look at
"uniform” lattices, Note that the lattice can be represented in terms of its smallest
possible unit or "sampling cell.” For the example of equation (1), the sampling cell is not
the 4x4 lattice shown but rather just the 2x2:

0 0
2)
1.0 |

In order to do the correct sampling, the cell is repeated until the sampling lattice is the
same size as the image to be sampled. The sampling cell may well be larger than 2x2.
For example, for hexagonal sampling (more below), it must be 4x4.

w
Il

3. THE SAMPLING MATRIX

Here we will want to look at a variety of sampling lattices based on certain 2x2 matrices
[1] which we will denote as M. Note that this M is not the sampling cell. “About the only
thing that is significant about M is that the column vectors of M are the basis vectors of the
lattice. Let's look at an example

2 0
Mg = 3)
0 2

Here and beyond in 2 this note we will find the square bracket Matlab notation to be easiest
towrite.  Thus a 2x2 matrix can be written as:

fa b | |
M= =[ab;c d] (4)
c d

This means that the basis vectors are the columns [a c] and [b d], or [2 0] and [0 2] in
equation (3). Any point in the [attice associated with M is a linear combination of integer
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muitiples of these two basic vectors. This includes the lattice point (0,0) of course and
the point (2,2), the point(2,8) and an infinite number of other laftice points. This M defines
the lattice. Note that the elements of the M matrix are all integers (positive, negative, or
Zeros). ' : _

The parallelogram spanned by the basic vectors, with the exception of the outer
boundaries (the two boundaries not including the point [0 0]) are called the Fundamental
~ Parallelepiped (FPD) of the matrix M. The lattice can be generated as the periodic
repetition of the FPD. Fig. 3 shows the lattice associated with Mg=[2 0; 0 2]. The FPD is
the 2x2 square cornered at zero, but does not include the line segments on n=2 and
nz=2. The integer points inside the FPD are (0,0), (1,0), (0,1}, and (1,1), but not the outer
~ boundary points (0,2), (1,2), (2,2), (2,1), or (2,0). In this case, the integer points inside the
FPD are also the sampling cell (but this is not true in general).
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Fig. 3 The FPD and lattice (filled circles) for rectangular sampling by 4

In addition to rectangular lattices, two others are common: the “Quincunx” and the
“‘Hexagonal.” The Quincunx has a typical matrix Mg =[1 1; 1 -1] while hexagonal is
typically Mp=[1 1;2 -2]. ltis best to think of these in terms of their column vectors
generating the lattice.  Fig. 4 and Fig. 5 show the corresponding FPD’s.
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Fig. 4 The FPD and Lattice (Filled circles) of Quincunx sampling

We can see that the Quincunx sampling is composed of the rectangular sampling
case plus additional samples offset by a vector [1, 1]. Rectangular sampling “by 4” means
that every other line and every other row is zeroed. That s, it is “by 2” in both directions.
Quincunx sampling involves every other sample of any row, the even samples of the even
rows and the odd samples of the add rows. Thus the density is twice as great, and
guincunx samples “by 2.” The only other ways to sample by 2 would be to set every other
row (or every other column) to zero. The term Quincunx refers to the pattern of five dots
like the 5 face of a die. Note that the sampling factor is obtained as the absolute value of
the determinant of M. . _ _

The FPD is the diamond shaped region shown. The integer vectors inside the FPD for
this case inciude (0,0) and (1,0), but not those on the outside boundaries (1,1), (1;-1), or

(2,0). The number of integer vectors inside the FPD is also given by the absolute value of
the determinant. - Note that in this case, the sampling cell is 2x2 and is given by:

s=[01;10] ' ‘ (5)
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Fig. 5 The FPD and Lattice (filled circles) for Hexagonal Sampling

The lattice and FPD for the hexagonal laftice is seen in Fig. 5. Since the determinant
of My has magnitude 4, this, like Mg, is sampling by 4. Like the Quincunx, we can
~ interpret this as the superposition of two rectangular (by 8) lattices. Here the second one
is offset by [1,2]. In an obvious way, there is an alternative offset by [2,1]. The actual
(centered) “hexagon” is shown, and note that it is not a regular hexagon (the sides are 2
on the top and bottom, and V5 on the sides). We could also interpret quincunx as a
hexagonal shape that is even less regular (the top and bottom are 2 while the sides are

V2). -

The FPD of My contains the points (0,0), (1,0), (1,1), (1,-1) but not the outside
boundary points (1,2), (2,0), or (1,-2). Here the sampling cell is NOT 2x2, but rather 4x4.
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4. FURTHER WORK WITH M

It is not likely that we would have paid much attention to the samplihg matrix M if all we
got out of it was the lattice. We might have just written down the lattice directly from
chosen basis vectors, and directly calculated the sampling density.  We have so far

derived from the matrix M the following:
(1) The basis vectors
(2) The lattice
(3) The sampling density for the lattice

It is a trivial matter to obtain from M its transpose M {flip about diagonal), its inverse M’ 1
and its “inverse transposed,” M". Here we will follow add itional procedures with M to see

that we can find the following addttlona[ things:

(4) The positions, in the frequency domain, of the sampling replicas
associated with the lattice. (More than one matrix can give

the same lattice. )}

(5) A region, the SPD of (1/2)M™, usually called loosely "the SPD," that
is a "bandlimiting” (region) for the matrix.

Just below we will describe the details of the computations we will make. This
- procedures is best illustrated by examples, so the reader should perhaps skim the
“recipe,” look at the examples, and then come back here for details if necessary. Hereis

the recipe:
(a) Compute the FPD of MT (just as we did for M above). This we do in exactly the

same way, finding the corners of the FPD by mapping (0,0), (0,1), (1,0), and (1,1).
The outer boundanes are not part of the FPD. [Of course, we have cases (Mg and

Mg) where M=M" ]
- {b) Find the "k vectors." These are the integer vectors inside the FPD of M". These k

vectors include points on the FPD boundary that are part of the two segments
going through (0,0}, but not those on the outer boundary. One of the k vectors is

always the point (0,0).

(c) Compute Mk for each of the k vectors. These give the positions in the fi-f
plane where spectral replicas occur.
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(d) Compute the SPD of (1/2)MT. The SPD means Symmetric Parallelepiped, and is
computed in the same way that the FPD is except the corners are obtained by
mapping (-1,-1), (-1,1), (1,-1), and (1,1). The two sides passing through the
corner mapped from (1,1) are excluded (as with the FPD), but this fact does not
matter much. '

(e) The SPD, if replidated about all the s'pectfal replication points will fill the entire
frequency plane exactly. Thus any region of spectral support that is inside the
SPD will not cause aliasing. This is analogous to low-pass 1D sampling.

(f) If the spectral support goés outside the SPD, there may or may not be aliasing.
There are other regions of spectral support that completely fill the frequency plane.
Among these are the SPD's corresponding to other matrices that have the same

lattice.

5. VERIFYING A PREVIOUS EXAMPLE

~ Since we know a good deal about the rectangular sampllng by 4 (Fig. 2b, Fig. 3) we
want to apply the recipe to the matrix Mg first. As noted, Mg =Mg so the FPD of Mg’ is
the same as that for Mg in Fig. 3. We see that there are exactly four “k vectors” inside the
FPD and these are (0,0), (1,0), (0,1), and (1,1). ltis easy to find the inverse of a 2x2 .
matrix: we exchange the two dlagonal elements, negate the two off dlagonal element, and
divide by the determinant. Thus Mg is [ 1/2 0 ; 0 1/2 ] and this is also Mg'. This gives
the spectral replicas as Mgk = (0,0), (1/2,0), (0 1/2), and (1/2,1/2) as shown in Fig. 6.
This is in agreement with the “experimental” finding of Fig. 2b.

Next, taking (1/2)Mg" we form the SPD by finding the corners generated by (-1,-1),
(-1,1.(1,-1), and (1,1), which gives a square of side 1/2, centered at (0,0). This is shown
in Fig. 7, along with the three replicas. These four (allowmg for perlodlc extensions)

completely fill the f1 -f, plane.

In the cases of Quincunx and Hexagonal sampling that we shall look at shortly, it is
easy to see simple shapes other than the SPD that also fill the fi-f2 plane without aliasing.
Here we will find a different shape by finding a different matrix that has the same lattice as

Mg [step (f) of the recipe above.]. One such alternative (found by frial and error) is:

Mr2=[4 2,2 2] | | - )

This case we will pursue- to make the point about the spectral support, but also to glve a
full example of the rempe for an unfamiliar sampling matrix.
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Fig. 8 Mg: gives the same lattice as Mg but with a different FPD and different k-vectors.
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Fig. 8 shows the FPD and the lattice of Mg.' (the same as the FPD of Mgy). We note
that the lattice is the same as that of Mg (Fig.3). Here the integer vectors inside the FPD,
the k-vectors, are (0,0), (1,1), (2,1), and (3,2}, which are different from the Mg case,
However, at the same time, we want to multiply these k vectors by Mgz, not by Mg ™.
Mg is given by:

Mra T =[1/2 -1/2; -1/2 1]

which when multiplied by the k vectors here give spectral replicas at (0,0), (1/2 ,0), (0,1/2),
and at (1/2,1/2), exactly what we had for Mg (same as Fig. 6). . _

Here for Mgy, the SPD is not the square of side 1/2 centered at (0,0), but rather the
more complicated parallelogram shown in Fig. 9, which is centered at (0,0). Also seenin
Fig. 9 are the three additional copies of this SPD. In order to see that these copies
completely fill the fi-f> plane completely, in Fig. 10 we have cut the pieces outside the unit
square and pasted them inside. Fortunately, this is about as complicated at it is likely to

ever get.

1k : _ Ur:ziSquEareag | ' |

08 -06 -04 -02 0 02 04 06 08 1 - 12

Fig. 10 Replicated SPD fills unit square. Replicas of the original SPD; segment
a, b, and ¢ are typical of the “cut and paste.” . :

——
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6. QUINCUNX SAMPLING

As noted ébove,’ Quincunx sampling offers the opportunity to achieve a sampling by 2
without discarding full rows or columns. Working from Mg=[1 1; 1 -1]we can go
through the full analysis.

Fig. 4 shows the FPD of Mg, which is the same as the FPD of Mg” since Mq"=Mq here.
We note from this that there are two k-vectors, (0,0} and (1,0). Mg =[1/2 1/2;1/2 -1/2] s6
the spectral replicas occur at (0,0) and at (1/2,1/2) in the f;-f; plane (Fig. 11).
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a 02 04 06 (1} 1 f
1

Fig. 11 Quincunx sampling results in an image at (1/2, 1/2)

The matrix (1/2)Mq " is [ 1/4 1/4 ; 1/4 -1/4 | so, multiplying the points (-1,-1), (-1,1),
(1,-1), and (1,1) by this matrix, the SPD here is a diamond shape with corners at (0,1/2},
((1/2,0), (0,-1/2), and (-1/2,0) in the f;-f> plane, as seen in Fig. 12. We note that this SPD
when repeated periodically fills the unit square in the f;-f> plane, in the same manner that
we saw for a different case in Fig. 10, although this one is much simpler. The area of the
SPD is of course 1/2 here. Further it is easy to see that the rectangular support shape
also shown in Fig. 12 will fill the fi-f> plane without overlap, and that this too has area 1/2.
This rectangular shape falls outside the SPD. This situation is analogous to bandpass
sampling in 1D.
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Fig. 12 The SPD for the Quincunx is the diamond shape.

7. HEXAGONAL SAMPLING

The case of Hexagonal sampling is given by Mu=[1 1;2 -2]. The lattice and the
FPD of My were seenin Fig. 5. Here since My is not the same as My, we do need to
look specifically at the FPD of My", and this is seen in Fig. 13 We see that there are four
k-vectors: (0,0), (1,0), (1,-1), and (2 -1)inside the FPD of My". The matrix My is given by
[ 1/2 1/2; 1/4 -1/4 ] so spectral replicas occur at (0,0), (1/2,1/4), (0,1/2), and at (1/2,3/4)
as shown'in Fig. 14. The SPD in this case is a squashed diamond with corners at (0,1/4},
(1/2,0), (0,-1/4) and at (-1/2,0), as seen in Fig. 15, along with the three spectral replicas.
Note again that the unit square in the f;-f; plane is filled. Also, there are other shapes that
fill the unit square which extend outside the SPD. For example, the square with side 1/2
will work (Fig. 16).
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8. SAMPLING BY 3

Many times we may have in mind a general idea of the sampling factor we wish to
achieve. For example, if we wanted to reduce the number of samples by a factor of 4, we
could use our Rectangular of Hexagonal examples. If we only wanted sampling by 2, the
Quincunx is the choice. Still there is a lot of room between 2 and 4, and we might like to
consider sampling by 3 if this is possible. Clearly all that we need to do is find a matrix
with a determinant of magnitude 3, so this is easy. However, we may also want to
consider if the sapling pattern is relatively uniform. Consider the case of choosing a
matrix Ms=[1 1;1 -2]. Here Ms"=M3 so Fig. 17 shows the lattice of M3; and the FPD of
Ms'. Note that if, for example we had a lattice that kept every third column, the points
would be one unit apart in the vertical direction but three apart in the horizontal direction.
In this case, the points are separated from others by distances of V2 or V5. Thus we think
of the lattice for M3 as being fairly well distributed. -

Here Ms™ =[2/3 1/3; 1/3 -1/3 ] while the k-vectors are (0,0), (1,0), and (1,-1), so

spectral repetitions are a (0,0), (2/3,1/3), and at (1/3,2/3), Fig. 18, while the SPD and its
two repetitions are shown in Fig. 19
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Fig. 17 The Lattice of Ms and the FPD of Ma'
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9. CIRCULAR SUPPORT

Above we have shown that 2D sampling results in replicas of the original spectrum,
and we have assumed certain shapes for the spectrum to see if the replicas overlap
(result in aliasing). Various shapes, the actual SPD, a rectangle, a diamond, and so on
can all be fried. But what is the spectrum of an actual image likely to be?

One approach is to take several images, take their FFT (2D), and plot it (likely
removing the DC term which is likely to be very large for the usual 0-255 integer format of
common images). Plotting these (perhaps with Matlab’s fftshift2 to put low frequencies in
the middle) we obtain the notions that different images can be very different, and thatin a
very general sense, they are circular. We might have thought they would be rectangular,
but there are no preferred directions in a general image.

Accordingly we ask how large a circular image can be and not overlap. Our approach
is largely geometrical here. Fig. 20 shows the case of rectangular sampling with circular
support of radius (1/4). |t is easy to see that inside the unit square there are four full
circles [1 + 4x (1/2) + 4 x (1/4) ]. Thus the area used is 47(1/4Y* = =/4= 0.7854. The
corresponding case for quincunx sampling is shown in Fig. 21, except here the radius of
the circles is V2/4 — but there are only two of them. Perhaps surprisingly this too uses n/4
of the total area (the geometry is just rotated 45 degrees).

15 T ; !

. I
%5 0 05 1 15

Fig. 20 Circular support of radius (1/4) with rectangular sampling
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Fig. 22 shows us the curious case where we show circular support of radius 1/4 using
hexagonal sampling. Once again, we have four full circles inside the unit square, and the
fractional usage is still, /4! In fact, all that has happened is that the middle column of
circles in Fig. 20 has slid down by 1/4. This has left open space between the columns.
So while we might think the circles could be larger based on the fy axis, they are already
touching in the f; direction.  This is a consequence of the fact that we have taken our
“hexagonal lattice from a square lattice. This will be discussed more in Section 10.

For completeness, we have shown our sampling-by-three example in Fig. 23. Here we
see that the circles touch along the diagonal when the radius is V2/6. There are three full

circles inside the unit square, so the ratio is #/6 = 0.5236, which is not very efficient.
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Fig. 23 Circular support of radius v2/6 while sémpling by 3

| 10 A REGULAR HEXIGON?

As noted in Section 3, we chose a Hexagonal sampling pattern from among available
rectangular lattice points, and this was not a “regular’ hexagon (not all six sides are of
equal length). Specifically, the four slanted sides in Fig. 5 are of length V5= 2.2359 while
the two horizontal sides are 2. However, our notion that these are not equal is predicated
on the idea that the spatial axes (ny and n;) are integers. That is, it looked like ny and ng
were both normalized spatial variables and were equal in spacing. A more general

~approach would be to say that the integers are the indices of the actual lattice points.
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In this case, the actual lattice spacing could be L, in the n, direction and L; in the n;
direction, where L is not necessarily equal to L. This has a corresponding (and
reciprocal) effect on the frequencies f; and f;.

The required geometry for an equilateral hexagon is that circles centered on the
nearest neighbor can be enlarged until the touch exactly (Fig. 24). With circular support, it
_is clearly not possible to get the circles any closer. How much of the total area does this

arrangement use?  In Fig. 24, the base of the equilateral triangle is 2 while its height is V3.
Thus the area is (1/2)-2 V3 = 3. This triangle contains three 60° slices of the circles, or
half a circle, for area (1/2)71? = n/2. The fraction of the available area that is actually
“used is thus (n/2)/V3 = 0.9069. This we compare with rectangular, quincunx, and non-
equilateral hexagonal which were =/4 = 0.7854, so this represents an improvement.

35
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Fig. 24 Detail of Geometry of the Equilateral Hexagon

For the equilateral hexagon, the circles in the frequency domain would just touch, as
would circles in the spatial domain if we were trying to maximize their area. However,
fitting the spatial domain hexagon to the rectangular lattice increases L, to 1 from v3/2,
and this decreases the vertical frequency by a factor of ¥3/2, and thus we see the circles
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Fig. 25 Expanding the “circles” in the horizontal direction produces
ellipses that touch (compare to Fig. 22)

touching first in the vertical direction (Fig. 22). We can not make the circles larger, but we
can increase their horizontal width by a factor of 2/43 = 1.1547 {making them ellipses) and
now they will just touch (Fig. 25). Equivalently we could just reduce the horizontal scale.

Either interpretation convinces us that the frequency plane is fully used under
equilateral hexagonal sampling. In this case, there is however slightly more resolution in
frequency vertically than horizontally (“unit square” is V3/2=0.866 tall and 1 wide).

It might well be that we would prefer to have the increases resolution in the horizontal
rather than in the vertical direction, and this would be easy to achieve. The basic vectors -
for the lattice would be (2,1) and (-2,1), and we would use M=[2 -2; 1 1], whichis just the
hexagonal lattice rotated 90°. '
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PROGRAMS

Generator for Fig. 1 and Fig. 2

X=[1 111 1 1 zexos(1,53y 1 1 1 1 13
x=1ifft (X} :

s=[1 0 1 01;:

S=[5 35 55 5555535335585 5]
Xs=XK.*s; ' ‘

XE=fft (xs}

XS=abs (X8):

figure{l)

subplot (211)

stem ([0:63],X)

axis([-2 66 -.1 1.2}}

subplot {212)

stem{[0:63],XS)

axis([-2 66 —-.05 .6])

X=zeros (65, 65);

for k=1:6
for m=1:6
Xk, m)=1;
end :
end

X=X+fliplr {X):
X=X+flipud{X);
X=X (1:64,1:64);
figure(2) -

mesh (X}

0;1 01 0;0000;10610];
s];

s=[0 0
3
s s8];
S
3

0
s={s s
s=[s s

s st
s sis

s=[s
s=[s

x=1fft2(X):
RS=8.*x;

X5 = fft2(xs):
XS=abs(¥XS};
figure(3)

mesh (X8}
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LAT.M

Main Processor of M Matrix

lat.m find 2D sampling lattice, etc. corresponding

to a sampling matrix M

‘examples: rectangular sampling M=[2 0; 0 2]
quincunx sampling M={1 1; 1 -1]
hexagonal sampling M=[1 1; 2 -2]

GP o d¢ of OC oo o

B. Hutchins Spring 2007

function d=lat (M)

d=det (M)

% find FPD of M by "corner mapping™
L1=M*[0 0]"':

L2=M*[1 0]";

L3=M*[1 1]"':

L4d=M* [0 1]°';

% find limits for plotting
top=max { [L1(2},L2(2),L3(2},L4(
bot=min([L1(2),L2(2},L3(2},L4¢
lef=min([L1{L1),L2(1),L3(1),L4{
rig=max ([L1(1),L2(1),L3(1),L4({
figure({l)

r=4; % plot bevond EPD

% plot axes

plot ([lef~xr rig+x], [0 01,'z")
hold on

plot ([0 01, [bot-xr top+r],'r')

r

)
) -
)
)

’
r
.

21
2]
1]
1)]

f

% plot integer vectors as circles
for k = bot-r:top+rx

for p = lef-r:xig+x

plotip,k, 'o")

end
end
% plot EPD
plot ([L1(1) L2(1) L3(1) L4(1) L1{1)]1,[L1(2) L2(2) L3(2) L4(2} L1(2)],'g")

% try integer vectors to see i1f on lattice - overplot o with *
- for nl=-10:10
for n2=-10:10
y=M*[nl,n2]";
plot (y(1),y{(2),"*xr")
end
end
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hold off

grid

axis([lef-r rig+r bot-r top+r]):
axis('square’}

title('FPD(M) in Green, * = LAT(M)');
% figure(l) completed

% Now do EPD of M' -~ this will be figure(2)
% same as foxr EPD above

MT=M";

F1=MT*[0 01"';
F2=MT*[1 O] "';
E3=MT*[1 1]"';
F4=MT*[0 1]°';

top=max ([F1{2),F2(2),E3(2),F4(2)]
bot=min ((F1{2),F2{2),E3{2}, E4(2)]
) E2 )]
) E2 )]

r

)i

)i
1i
)i

lef=min{[EF1(1 (1), E3(1),F4({1
rig=max{[F1(1 {1),E3(1}, F4(l
figure(2) -

r=4;

plot{[lef-r rig+r], [0 0],'x"}
hold on '

plot ({0 0], [bot-r top+r],'z')

for k = bot-xr:top+x
for p = lef-r:rig+rx
plot(p,k, 0"}
end
end

plot {[EL(1) F2{1)} E3(1) F4(1l) F1(1)],[FLl(2) E2(2) F3(2) F4(2) F1(2}1,'g")

for nl=-10:10
for n2=-10:10
y=MT* [nl,n2]"';
plot {y(1),y{2),"*xr")
end
end

hold off

grid

axis({lef-r rig+r bot-r top+r])

axis('square')

title{("FPD{M Transpose} in Green, * = LAT(M Transpose)}'};
% figure(2Z) completed
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% find the k vectors - this will be figure(3)
% integexr vectors inside EFPD of MT

e=0.00000001;
% tclerance for roundoff problems with comparisons at outer edge

% map back to unit square
Ckn=1;
for nl=(lef-1):{(rig+l)
for n2=(bot~1l): (top+l)
kt=inv{MT)*[nl,n2]";
if kt(l) >= 0 & kt(l) < (l-e) & kt(2) »>= 0 & kt(2) < (l-e)
k{kn,1)=nl; :

ki(kn,2)=n2;
kn=kn+1;
end
end
end
kn=kn-1
k=k’

% k-vectors found

% find positions of replicas, M inverse transpose times k
s5=[0 0]";
for m=1l:kn
ss=(inv{M) "} *[k(Ll,m} k(Z,m)}’
s(m,1)=ss(l);
s(m,2)=ss(2);
end

$ frequency domain square
figure(3) :

plot{[0 1 1 0 0],[0 0O 2 1 0),"g")
hold on ' '
% cyan vectors with red * finals:
for m=1:kn

plot ([0 s{m, 1)), (0 s(m,2)], 'c")
end '

for m=1l:kn :
plot{s(m,1),s{m, 2}, "*x")

end

grid
hold off
axis([-.1 1.1 -.1 1.11);
axis('square')
title('™M Inv Trans * k vectors Spectral Replica Centers')
figure(3)
% figure(3) done
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% find the SPD and plot

% SPD matrix

SPDM = (1L/2)*inv (M) ';

% corner map

spdl=8PDM* [-1 -1]";

spd2=8SPDM* [-1 1]';

spd3=SPDM*[1 1]"':

spd4=3SPDM* [1 -1]"';

% frequency domain square

figure (4}

plot ([0 1 1 0 031,[0 0 1 1 0),'g")
held on

% displacement vectors as in figure{3)
for m=l:kn '

plet ([0 s{m,1)], [0 si{m,2}]},'c")
end

for m=1l:kn
plet{s(m,1},s(m,2),"*x")

end

sl=[spdl(l) spdZ2(l) spd3(l} spdd(l) spdl(l)}l;
s2=[spdl (2) spd2 (2} spd3(2) spdd(2) spdl{2)]
% replicas of SPD about displacements s

for m=l:kn :

sll=sl+s{m,1);

§22=s82+s{m, 2);

plot(sll,s22,'b: ")

end

% overplot original solid

plot{sl,s2,'b")

-
r

hold off

lef=nnin([sl C])-.3;
rig=max ({sl 1])+.3;
top=max{[s2 1]}+.3;
bot=min{[s2 0])-.3;

grid

axis([lef rig bot top]l):
axis({'squaze')
title('SPD 1/2M Inv Transp + replicas')
figure(4)

% figure({4) completed

AN-369 (28)




