ELECTRONOTES | APPLICATION NOTE NO. 366

1016 Hanshaw Rd :
Ithaca, NY 14850 May 2006

- 607-266-8492 |
UNFILTERING — EQUALIZATION

1. INTRODUCTION

A filter modifies a signal — that is its purpose. But if it is a linear time-invariant (LTI)
system, it only modifies the amplitude and phases of input components, but does not
change any frequencies. These modifications are according to what we call its “frequency
response.” Yet often times this view is not particularly helpful. Such is the case where
we have relative!y short transient-like inputs for which the Fourier decomposition is
continuous in frequency and pOSS|ny hard to determine. In such cases, a time-domain

view may work better

For example, we might have a sharp rectangular pulse (or sum of such pulses) as the
input. Moreover, the filter might be unintentional. - We might be trying to transmit the
pulse over a “channel” and the channel is not “transparent.” The sharp pulse gets
smeared, and may not retain enough information about its presence and location at the
far end of the channel. Such a channel can usually be characterized as a system or filter.
Our interest in such cases is often one of undomg the damage done by the channel
somethmg that is often called “equalization.”

2. INVERSE FILTER

Clearly one simple approach to this is to consider using the “inverse filter” if the
original filter is known (perhaps by analysis of by experiment}. For example, suppose that
the first filter is a length-3 FIR with tap weights 1, 2/3, and 1/3, perhaps the sort of thing
that we might think of as “smearing.” That s, if we put in an impulse, the response to the
input is three output values: 1, 2/3, and 1/3. Thus

Hi(z) = 1+ 213y + (1/3)z2)
We can understand that this could cause problems. If for example, we wanted to clean
up the signal on the receiving end, we might threshold the samples relative to 1/2, and
what should have been a single impulse becomes two adjacent impulses.

Thus if we know the original filter, We can easily calculate its inverse, which is here a
purely IR filter, as:

Ha(z)=1/[1+ (2?3)2‘1 +(1/3)z2] (2)
| AN-366 (1)

. 3(n) -~ .
N - - ‘@ s
-2/3,
. ' 1/9,
4127,
= 1181,
— S 1 107243,
z ' z"

13 :
‘ =13
| — -
Fig. 1a “Channel” H1(z) and Equalizer H2(z) ‘ Fig. 1b Equalizer Hx(z)

It is obvious that the product H1(z)H2(z) = 1 and is transparent. Fig. 1a shows the case
where Hq(2) is in series with Hx(z) and if we look at the impulse response of this cascade,
we see that it is just the impulse itself — sort of magic the way the IR section is shut down
(this is easily done by simulation by hand). Note from Fig. 1b that the IIR section by
itself, does have an infinite duration impulse response.

ha(n)

=3

1.0000
-0.6667
0.1111
0.1481
-0.1358
0.0412
0.0178
-0.0256
0.0111
0.0011
-0.0045
0.0026
-0.0002
-0.0007
14 0.0005
efc.

CSOCONOURWN=2O
— .

NN
w N

- This inverse filter “answer” serves as a guide for how well other filters may serve as an
equalizer for Hi(z). '

AN-366 (2)

Ha(z) in this case is a stable IR filter, which is seen from the decaying impuise
response, or from the poles which are at [same as the zeros of H(z) of coursej:

p12= -0.3333 04714 (3)
which are nicely inside the unit circle.

This inverse filter works even when the inverse filter has poles on, or even outside the
unit circle — at least in theory. This is because the unstable poles come after the
corresponding zeros that cancel them. In practice, this is not good enough, because of
noise in the output of the channel. Let's look at a second related example. Consider

Hi(z) = 1/3 + (2/3)z" + 22 | (4)
with it's corresponding inverse |
Hoz) = 1/[1/3+ 23z + %] _ (5)
so that now the poles of Hx(z) [zeros df Hq(z)] are at:
p12=-1.0000 * 1.4142 | | (6)

which are the reciprocals of the poles in the first example, and clearly outside the unit
circle. We can modify the setup of Fig. 1a as shown in Fig. 2, which shows the new filters
and the addition of a noise to the output of the first filter. Simulation of this with noise
amplitude zero shows recovery of the impulse (Fig. 3a) while even a tiny bit of noise
(amplitude 0.0000002 relative to a unit impulse) causes the output to blow up (Fig. 3b).
What this says essentially is that if you take an unstable filter [Hz(z}], with its internai
states initially zero, and give it any input that has not been pre-filtered to cancel [by

H1(z)], the filter Hz(z) wilt blow up. The noise goes directly into Hy(z), and thus gets the
filter started blowing up.

W@ 3 Ha(2)

© 8(n)

Fig. 2 "Chanhel” Hi(z) and unstable Equalizer H,(z) with possible noise N(n)

AN-366 (3)

Fig. 3 In (a), the unstable inverse Hx(z) works because the impulse was pre-filtered by
H4(z), and the noise is zeroed. In (b), the noise is non-zero (still tiny) but it is
enough to cause the filter Hx(z) to start blowing up.

One way to obtain a FIR approximation to an IR response is to truncate the IIR
impulse response to finite length, but this clearly would work only for the case where the
response is getting small with increasing time, and where enough impulse response

-values are kept so that the truncation error is minimized. If the IIR filter is unstable (for
positive time) this is never going to work.

3. LEAST SQUARES FIR EQUALIZATION

We could take the approach of insisting that the equalizer Hx(z) be FIR. Our goal
would be that the impulse response of the cascade of H4(z) with Ha(z) would be, or more
lkely would approximate, a delayed (and possibly scaied) impulse. If we input an
impuise 3(n} into the cascade, the output is the convolution of hy(n) with ha(n). We
would like this convolution to consist of values that are all zero except for one value which

AN-366 (4)

is 1. We know hy(n) and we choose a desired length for ha(n). The length of the
convolution of hq(n) with ha(n) [which we can all h3(n)] is the sum of the lengths of hi(n)
and hz(n) minus 1. Thus since the length of hy(n) is two or more (otherwise, there is no
problem to solve), we see that we need to choose values of a convolution sequence that
is longer than hz(n). We do not have enough information for an exact solution.

"Consider the following example. Suppose hy(n) is the sequence {1 1}. That s, the
filter smears an input sequence by glvmg an output that is the sum of two consecutive
samples Thus we have Hq(z) = 1+z". The inverse filter to this would be Ha(z) =
1/(1+z™") so it would have a pole at z—-1 (on the unit circle) and would not be an
acceptable inverse.

- 8o we choose a possible FIR as an equalizer. Suppose we choose a length four FIR
for Ha(z) with tap weights a, b, ¢, and d (tc be determined). The convolution of h¢(n) and
ha(n) is thus length 5, and we might choose this to be a target sequence hs(n) =
{0 0 1 0 0} (a twice delayed impulse). How do we choose a, b, ¢, and d?

The first value of the convolution of a sequence {1 1} with a sequence {a b ¢ d} is just
a and we want this to be the target value of 0.. Thus a=0. The second term of the
convolution sequence is a+b and we also want this to be 0. The third term of the
convolution is b+c and we want this to be 1. The fourth term is ¢c+d which should be 0,
and the fifth term is d which should be 0. This is not going to work! In summary, we have
5 equations, but only 4 unknowns.

a =0
atb=0
b+c=1 (7)
ctd=0
d =0

~ which are, in matrix form:

100071 [a 0
1100 b 01
01 101 le| = |1 (8)
00 11 d o
0 0 01 0

All we can do is solve these to minimize the squared error. Note fhat the errors are:

AN-366 (5)

(a-0)
(a+b-0) :
(b+c-1) ' (9)
(c+d-0) :
d-0)
If we square thesé and sum them, the total squared error which we can call E?is:
E? = 2a° + 2b% + 2¢% + 2d? -2b -2¢ + 2ab + 2bc +2¢d + 1 (10)

We can take partial derivatives of E? with respect to a, b, ¢, and d, and set them equal to
0. This gives us: . : o :

9E%sa=4a+2b=0
oE%ob=4b—-24+2a+2¢c=0
(11)
oE%oc=4c~2+2b+2d=0
E48d=4d +2c=0

We now have four equations in four unknowns which are, in matrix form

4 2 0 0 ‘a 0

2 4 2 0| 1b 2

0 2 4 2 c 2 (12)

0 0 2 4 d 0
which invert to

ho= {abcd} = {-02 04 04 -02} - (13)

In order to see if this is helping, we need fo see how well we approach our target |

convolution sequence of {0 0 1 00}. Convolving {-0.2 0.4 0.4 -0.2} with the h,
sequence {1 1} we arrive at:

hs={-0.2 02 08 02 0.2} (14

This is not all that bad for a length 4 equalizer. Note for example that if we were {o
threshold this output relative to 0.5, we would have our targeted result.

AN-366 (6)

4. A GENERAL PROGRAM

Above we solved the equalization problem with a classic least squares approach, and
we set up the problem and solved it, largely by hand. It is useful to do this, but we might
well get tired of doing many examples, and we do need more examples to see how well
this can work. We will short-cut by using a couple of Matlab functions.

In our hand example, we wrote out the elements of the convolution sum, equation (8),
and then wrote these as a matrix, equation (8), which is a convolution matrix. [t is clear
how we do this, and the matrix elements are easily written down for specific cases (and
are certainly not limited to being all ones or having any particular pattern). Matlab has a
function convmtx that does this. The least squares solution is also easily solved with the
Matlab pseudo-inverse, pinv. It is then merely a matter of writing the target convolution,
which differs slightly for even and odd cases. In fact, this target could have been made
an input parameter to the program, and need not be made just a delayed impuise.

These possible changes to the program are likely obvious. The program is given below
as Isi.m.

function [hl,hk2,h3]=1si{hl,N)
function lsi(hl,N)

ae

% hl = FIR to invert
% N = length of inverting FIR
% h2 = inverting FIR (to calculate)

ae

L=length (hl)+N-1 % convolution length hl and h2
m=convmtx (hl,N)’

sm=size(m};
r=zeros{l,sm(l)};
lr=length(x);

if mod{lr,2)==1;
ri{{le+l)/2)=1

end

if mod(lx, 2)

r{ir/2)

==();
1
end

% least sguares inversion
h2=pinv(m)*r'; '

% test - does this lock like «x
h3=conv (h2,hl);

h2=h2"';

h3=h3';

AN-366 (7)

5. MORE EXAMPLES

Using the general program, we can run through a number of examples of least square
FIR inversion. We can begin by repeating the hand example of Section 3, but do it for a
longer length equalizer. Here the command lines is: Isi([1 1],14), so our equalizer is
length 14. The result is seen in Fig. 4

Fig. 4 Isi((1 11,14) Length 14 equalizer of length 2 hold.

In our length-4 hand-calculated case, we had
h,={-02 04 04 -02} (15)
and _
ha={-02 02 08 02 -02} . (16)

In this case we have:

AN-366 (8)

h, ={0.0667 -0.1333 0.2000 -0.2667 0.3333
-0.4000 04667 0.4667 -0.4000
103333 -0.2667 0.2000 -0.1333 0.0667} (17)
and
hs ={0.0667 -0.0667 00667 -0.0667 0.0667
-0.0667 0.0667 0.9333 0.0667 -0.0667
0.0667 -0 0667 0.0667 -0.0667 0.0667 } ' (18)

We'see that the longer length equalization filter results in an overall impulse response (hs)
that is more like a delayed impulse,

As a second example of the use of the program, consider Isi([1 2/3 1/3],15) which has
the same h;(n) as was used in Section 2, and we saw that this had a stable inverse. Fig.
5 shows the result, which appears in the figure, to be excellent. Looking at the actual
numbers, we find that for the equalizer we get:

h, = { 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000
0.9999 -0.6664 0.1109 0.1476 -0.1342 0.0395 0.0163 -0.0178} (19)

which is a good approximation (delayed) to the true inverse filter response tabulated in
Section 2. This is expected, and the approximation gets better and better as we increase
the length of the FIR equalizer. The response hz(n) is properly thought of as truncated
FIR approximation to the actual IIR inverse. ' '

Naturally our interest now furns to the case where there was an unstable inverse.
What happens if we try: Isi([1/3 2/3 1], 15) ? The result is shown in Fig. 6 and we note
that hz(n) in this case is indeed a delayed impulse, so this does “work.” It is interesting
to see how it worked, and this we learn from hy(n) of Fig. 6. I's the “anti-causal’ part of
the blown up response. A filter that blows up for positive time decays for negative time
(and vice versa). We have just turned things around. Reversing hs(n) forced us to
reverse hz(n). Note that just as it was necessary to not truncate the FIR response until it
got small on the positive side, here we need to be sure we start the FIR equalizer where
the response is small (small relative to input signal levels) on the negative side.

In fact, this tells us how to handle the issue of an unstable inverse — by taking the anti-
causal portion, truncating it at a negative value of n where it is sufficiently small, and
shifting the whole response to the right to make it causal. _

AN-366 (9)

le invers

SEeren

T

Fig.6 Isi([1/32/31115) - unstable inverse

AN-366 (10))

As an additional example, consider the case where hy(n) can be thought ofasa
truncated lIR response. For example, suppose hq(n) is the sequence {1 1/2 1/4 1/8 1/16
1/32 1/64}. Fig. 7 shows the result of running Isi(f1 1/2 1/4 1/8 1/16 1/32 1/64], 12}

Fig. 7 [h1,h2,h3]=lsi([1 1/2 1/4 1/8 1/16 1/32],12) - truncated IR

This result is curious in that it has values for hx(n) that are, for the most part, very
close to zero except for two values of approximately 1 and approximately -1/2:

hp = {0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000
© .0.0000 09998 -04999 -0.0000 0.0015} (20)

This we recognize at the “right answer” since the sequence h4(n) for this case is a
truncated (to length 6) version of the sequence (1/2)". The fact that it begins at sample 9
(n=8) is dues to the way the program sets up the target response (r). If we move the 1 in
r to the first position (n=0) the response for hz(n) and hs(n) shift left accordingly. In any
event, it is clear that the FIR equalizer only needs to be length 2 for all practical purposes.

AN-366 (11)

6. A SYSTEM IDENTIFICATION APPROACH

So far we have assumed we know hy(n) and thus Hq(z). Often times we do, by
analysis or by measurement. But we can consider an approach to finding the equalizer
that uses a standard system identification (system ID) approach. In this case, we
assume that we do not know the system Hq(z), but we do have data giving input samples
to H1(z) and the corresponding output samples. This is more or less a classic “black
box” problem.

The approach is to take the output from H4(z) and find a filter Hx(z) that gives us back
the input. We see that this is the inverse filter problem again. Inis a system ID problem
in the sense that once we find Hax(z) we also have (the unknown) H1(z) This is further
closely related to adaptive filtering and Wiener filtering.

Fig. 8 shows an attempt of invert H/(z) using a two-tap FIR filter Ha(z). Our goal here
is only to set up and solve one specific small problem to achieve a test program. We will
use here a notation that is used in adaptive filtering, so the input to the filter Hq(z) is d(n)
(desired signal) while the output is x(n) (reference) while the tap weights are denoted by
W. Because we want to see if the output of Hx(z), denoted y(n), is the recovered input,
we calculate the error e(n). Our goal is to minimize the error, in this case, in the least
sguares sense.

3

Fig. 8 The system model approach
From Fig. 8 we can write down an expression for e(n):
e(n) = d(n) —wox(n) —w;x(n-1) ' (21)
So the squared error on this one sample is:
e%(n) = d(n) + wo2x(n)? + wyx(n-1)°

-2d{n)x(n)wg — 2d(n)x(n-1)wq + 2wow4x(n)x(n-1) (22)

AN-366 (12)

and the squared error over all samples can be written:

E2=). e(n)? - 23)

n

and this we need to differentiate with respect to wp and w;, setting the partial derivatives
to zero: :

0Eowo = 2, {| (2wox(n)? — 20(nx(n) + 2wix(nx(n-1) } = 0 - (243)

%o =), { @wix(n-172 = 2d(x(n-1) + 2wox(nix(n-1) } =0 (24b)

which is, in matrix form:

2 x(n)? 2 xx(n-1) | [wo 2. d(mx(n)
n n = n (25)
D x(n-1)x(n) > x(n-1Y? wi > dmx(n-1)
" n h L N
Denoting the 2x2 matrix by R (input autocorrelation matrix) and the length 2 column
vector on the right by P (cross-correlation vector), the weight vector W is thus:
w=R"P (26)

which is usually called the Wiener solution.

Extension of this length 2 solution to a longer weight vector is straightforward [adding
x(n-2), x{(n-3),.....]. The program wietest.m below allows us to implement and test this
approach. n this program example we have first generated a random sequence (d) and
then filtered it (x) with our test impulse response hy ={12/3 1/3}. We then choose a
length for our FIR equalizer (10 here) and compute the sums over a range of n for the
matrix elements of R and for the elements of P. Then the weight vector W is obtained .
[the impulse response hz(n)] and tested by convolving it with h4(n). The result depends
slightly on the particular run, since the random sequence varies with each run, but for the -
most part, we see that we get ha(n) that is in good agreement with the known inverse '
obtained in Section 2.

AN-366 (13)

% wietest.m
d=2* (rand (1,1000) -.5} ;
x=filtex ([1 2/3 1/3],1,d);

samps=990
R=zeros (10,10);
for nl=0:9
for n2=0:9
for n=l:samps
‘R(nl+1,n2+1)=R{nl+l,n2+1)+x (n+nl)*x(n+tn2);
end
end
end
R
P=zeros(1l,10);
for nl1=0:9
for n=1:samps
P(nl+1)=P(nl+1l)+x(n) *d(n+nl);
end
end
P
W=inv {R)*P'

tst=conv(W, [1 2/3 1/31)

Typcial results of running wietest.m are shown below:

W ={1.0001 -0.6663 0.1101 0.1481 -0.1354 _
0.0405 0.0180 -0.0245 0.0100 0.0001} (27)

tst ={1.0001 0.0005 -0.0008 -0.0006 0.0001 -0.0004 -0.0001
0.0010 -0.0003 -0.0014 0.0034 0.0000 } _ (28)

Here we see that W, or hx(n), is very simitar to that of Section 2.

AN-366 (14)

/. THE LMS ALGORITHM

Another way to solve the problem is to use the LMS algorithm and have often used a
program adapt.m for our demonstrations (below). We should be able to use this program
to obtain the Weiner solution. We begin by generating samples exactly as in wietest.m
except we make 2000 samples. We then run:

[y,e,w]=adapt(d,x, 14, 0.05)

Fig. 9a shows the first figure of the results of running the test. Here the desired signal is
d, and the reference signal is x. The signal x is d filtered by hy = { 1 2/3 1/3 }, although
thls can't be noticed from the figures. Running the program (iterating over all samples,
we note that the error gets very small, even by samples 300 or so. This is what we want.
When the error becomes effectively zero, the tap weights that are iterated by the “LMS

Algorithm:”
wi(n+1) = wj(n) + 2pe(n)x(n) (29)

must become stationary in time. In this case, the weights w form our FIR equalizer.

==

Fig. 9a The results of running adapt.m
AN-366 (15)

1
]
[l
[l
1
[
1
-
1
'
1
\
1
1
1
-
1
1

Fig. 9b The tap weights from adapt.m and the frequency response.
Fig. 9b shows the second figure printed by the program, and here of most interest are
the now-stationary weights. Printed out, these are for this run:

w= { 1.0001 -06665 01111 01481 -0.1357 0.0412 0.0178
-0.0256 0.0112 0.0010 -0.0043 0.0025 -0.0003 -0.0003} (30)

By now these are very familiar and can be compared to the results of Section 2 and
Section 6.

AN-366 (16)

function (y,e,w]=adapt{d,x,L,mu, W0}

o e
% function [y,e,w]=adapt(d,x,L, mi, W0}

% .

% ILMS ALGORITHM ADAPTIVE FILTER SIMULATOR (adapt.m)

%

% INPUTS:

% d is desired signal, x is reference signal, both the same length
% L is the length of the adaptive linear combiner

% mu is the convergence factor (try about 0.01 to stazt)

% WO, when included, is an initial weight vector ¢f length L

%

% OUTPUTS:

% vy is the output of adaptive linear combiner (correlated signal)

% e 1is the error (uncorrelated signal)

% w is the final weight vector

D o e i e kAl B T e e e e
% ___
% 1 2 3 L-1

% X memm=—= me——— === ===

% [=14 I =1 1__ 1 =xr1___ _ | =11__

% \ | = (I T - I ||z [1 | z |

% N e foomm—— [==—-- b e I

% \ WO WL\ / W2 / W3 /

% N e / /

% \mm— ! SUM f====/ O /

% ___________

% |

& [=== m e e e g

% (=) 1

% (+) ——-—-

$ @ ——mmmmmm e | SUM |===—————m—mm—mmmm e e

% _____

%

% LMS Algorithm Wi (n+l) = Wj{n) + 2¥mu*e (n) *xj (n)

%

% B Hutchins 1993 2001 2006

% ___

% check for user-given initial weights
% else set taps to zero

if exist ("WO')==1 w=W0;
else w=zeros{l,L);

end

xj=zeros(1l,L); % initialize linear combiner delay line

for n = l:length({d) for each iteration

o0 op

o OP dO o0 O0 of o0 OP O° O° oF oP

oo

o0

O O OO Of OF OPF O O OP OC O° O G° dP 9P S O O of

xj=[x(n),x3(1:L-1)1;

y{n)=xj*w';

e(n)=d{n)-y(n};

w=w+2*mu*e (n) . *xj;
end '

move data up line

compute y

compute e

update taps w(ntl)=w(n)+2Zmux(n}e(n)

o0 dO of of oP of

AN-366 (17)

figure(l);

clf _

subplot (221)

plot (x)
title{"reference')
subplot {222}

plot (v)

title{'y - correlated')
subplot (223)-

plot (d)
title('desired’)
subplot (224)

plot (e}

title{'error - unccrrelated")

figure{2)

clf

subplot (221)

stem{w)

title("tap weights at end')
subplot (223)

H=freqgz (w,1,500);

plot ([0:.001:.499],abs (H))
grid

title('magnitude at end')
subplot (224)

plot ([0:.001:.489],angle (H))
grid

title{'phase at end')
figure (2)

90 Ge gO 9o of 4P

of oR

oL

el

e

d° OO S° OP 0P dO b oo

plot the four signals

X

now plot the impulse and freq. resp.

of the final taps. This is strictly
valid information only if the error
is zero. If the error is very
small, and/or if mu is very small,
the result may be valid of thought
of as an instantaneous fregquency
response.

AN-366 (18)

