ELECTRONQTES APPLICATION NOTE NO. 365
1016 Hanshaw Rd ' _
lthaca, NY 14850 April 15, 2006
607-266-8492 '

FREQUENCY ANALYSIS/RESOLUTION WITH FEW SAMPLES

INTRODUCTION

When we have a relatively short time sequence, the DFT does not always seem
to give the "correct” frequencies based on what we know or suspect about the time
waveform (in addition to the samples themselves).

Comment 1: N numbers in and N numbers out.

Of course, the input x(n) to a DFT is only N real numbers for a real length N
~ sequence. We thus expect the DFT X(k) to contain only N real numbers. In
~ general, even for a real input sequence, the DFT gives us N complex numbers.
However, this does not mean that we have twice as many real numbers, since the
X(k) are symmetric: X(N-k)=X(k)*. (Here * implies complex conjugation.) The DFT
has nothing to work with other than the N numbers. Anything we "know or suspect”
about the sequence x(n) is not available to the DFT.

Comment 2: DFT as sampling df DTFT.

In general, an arbitrary signal will not have frequencies that correspond to
frequencies that the DFT “knows.” We are accustomed to compute a DFT as:

N-1 _ '
X(k) = X x(njeden k=0,1,.... N-1 (1)
n=
The DFT is a sampling (in freqijency, indexed by k) of the “self-windowed” DTFT:

N-
X(f) = z; x(n)e 2T all f (2)

(or by equivalent equations) where T is the sampling time, the reciprocal of the
sampling frequency fs. From this we note that:
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X(K) = X(f = f = KWINT = kfy/N) (3)

This equation is extremely useful because it tells us how to "calibrate" a DFT as
a spectrum analyzer. A particular k implies a certain frequency kfs/N. The possible
frequencies are thus integer muitiples of f/N. Because both x(n) and X(k) are
discrete, x(n) and X(k) are periodic with period N. Thus x(n) may be obtained as
samples of a sequence that is not periodic in N, but when represented by X(k), it is
forced to be a weighted sum of DFT harmonics fi=kfs/N. In general this is of course
artificial.

At the same time, only input frequencies that are multiples of f/N can be
perfectly resolved (non-zero values only for k and N-k). A frequency between
integer multiples of /N will be a combination of all DFT frequencies, strongly
favoring close values of k, and this phenomenon is called "leakage.”

- Tounderstand leakage, we need to recognize that the DFT is "self windowing" in
that it uses only x(n) for n=0 to N-1. The DTFT of this "rectangular window" (a
length N running sum) is a periodic sinc which has zeros spaced at mfy/N for integer
values of m except for m=0. Thus the spacing of the zeros of the window is exactly
the spacing of the DFT frequencies, equation (3). Further, we understand the
DTFT of a sampled but infinite duration sinusoidal signal of frequency f to consist of
"spikes” at f, at -f, at f.-f, at fs+f, and in general in pairs spaced about all multiples of
fs. (This is just the spectral replications due to sampling in time.) This can be any
frequency f, and is not in general a DFT harmonic (as we said above).

In order to understand what the DFT is supposed to give us, we first need to
_understand what the DTFT is, and then sample this DTFT. Because the signal x(n)
is obtained by multiplying the infinite duration sinusoidal signal by a rectangular
window, we need to convolve the DTFT of the sinusoidal signal (the spikes) with the
DTFT of the discrete rectangular window (the periodic sinc). In a simplified view,
we envision a single spike with the peak of a periodic since attached to its top. As
the continuous frequency f moves up and down (as it would perhaps if we turned
the frequency dial of a functlon generator), it drags the periodic sinc up and down
with it.

Once we fix f to a specific value (stop turning the knob) we then obtain the DFT
by sampling the now stationary DTFT. In the rare instance where fis an integer
_multiple of f/N, the DFT samples occur at the peak of the periodic sinc (for k=Nfff;,
-and at k =N - Nfffs) but is zero for all other values of k (Fig. 1) In the general case,
sampling the DTFT gives non-zero values for all k, although we would expect
spectral energy to be concentrated about k=Nf/f; (k not an integer in this case). |
we saw the largest peak at, say, k=2 with a somewhat smaller peak at k=3 we m!ght
correctly surmise that some value of k between 2 and 3, closer to 2, would
represent the truth (Fig. 2). Figures 1 and 2 were generated using dtftview.m from
the appendix.
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Eig. 1 Exactly two full cycles are resolved into.just k=2 (and k=10)

Accordingly, the frequency resolution is expected to be poor if N is not large
enough (no better than f/N). This might be why we would claim that the DFT did
not give us a very good answer. But, this claim of poor performance is based on
information the DFT does not have. The DFT has only got its N numbers - not the
fact that we know or choose to believe that the samples x(n) are actually samples of
a sinusoidal signal. In such a case, we interpret the fact that X(k) is non-zero
everywhere as "leakage." But, we can get the exact same DFT by summing DFT
harmonics. This is not difficult since the DFT itself gives us the required weights.

In the absence of more information, we don't know that this direct summation (“DFT
series,” the usual inverse DFT) is not the truth.

Comment 3: Bandlimited in the sense of the DFT.

Just above we suggested that x(n), regardless of its actual origin, can be
considered to be a weighted sum of DFT harmonics. This set of DFT harmonics is
"forced” upon the samples because we are using the DFT. In general, even if the
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Fig. 2 Here the DTFT is dragged up from k=2 to k=2.3, while the sampling
of the DFT, the DFT, remains at the integers, resulting in “leakage”

original signal is periodic, there is no reason to suppose we have chosen samples of
exactly one full period. [t would therefore seem informative to see just what this
periodic waveform looks like. One way to do this would be to extract the amplitude,
frequency, and phase from the DFT values, and reconstruct component by
component. (Compare this to the weli-known procedure of summing a Fourier
series, which is similar - the difference is that the Fourier series uses frequencies
that actually are the harmonics of the function being analyzed. See also AN-364 on
computlng Fourier series coefficients using the DFT.)

A far simpler way is to use DFT interpolation. To do this, we take our original
time points x(n), take the DFT X(k), and then (properly} zero-pad the middle of the
DFT to form a new DFT Y(k), and invert this to get the interpolated sequence y(n).
This will return more details (an interpolation) of the function that it periodic and
bandlimited to DFT harmonics. The program dftintrp.m from the toolbox allows us
to examine these ideas.
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Fig. 3 Interpolating with the DFT — an expansion in DFT harmonics

Fig. 3, show an example where x(n) consists of six samples, 0, 1, 2, 3, 4, 5, and
6. Naturally we might think of these as samples of a ramp - but what ramp? Isita
ramp that keeps going up forever? Is it perhaps a portion of a periodic ramp that
runs from 0 to 9 and then repeats? Or is it perhaps a periodic ramp that goes from
0 to 6 and then repeats? Clearly, whatever happens outside the limits of the six
given samples will not affect the DFT results. What we are asking is what function,
bandlimited in the sense of the DFT, goes through these six points. The waveform
in Fig. 3 shows the six original points interpolated to 100 points total. If you will, this
is the DFT's "best guess” as to what waveform the samples x(n) might have come
from.

As we discuss in AN-364 on computing Fourier series coefficients using the DFT,
the waveform of Fig. 3 is not the truncated Fourier series of a periodic ramp (a
sawtooth waveform). It is a truncated sum of sinusoidal components, and there are
four frequencies here (d.c., a "fundamental,”" and two harmonics). But they do not
fall off as a Fourier series. .
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Fourier Series Length 7 DFT

fundamental 1 1
second harmonic 112 0.5550
third harmonic 13 0.4450

That is, while the length 7 DFT gives the correct Fourier series coefficients for the
waveform of Fig. 3, these are not the fruncated Fourier series coefficients of a
sawtooth. There is no truncation here - the DFT is naturally bandlimited to its
harmonics. One interpretation is that the DFT values contain all the harmonics
through aliasing, and that is why they are larger than the Fourier series coefficients.

The use of the example with the ramp is interesting but here it serves mainly to
fllustrate the bandlimiting of the DFT, and we want to get back to a sinewave

example.
Suppose we_weré give just three samples: 0, 0.5, and V3/2? Suppose we are

also told that these are samples of a sinusoidal signal.  Almost immediately we
would get the correct answer by inspection as:

x(n) = sin(27n/12)

The problem where this is not obvious by inspection will be considered in Comment
4 below. But what does the DFT have fo tell us about these three samples?

k X(K)

0 1.3660

1 -0.6830 + 0.3170]
2 -0.6830 - 0.3170j

Here the DFT has analyzed the three given points into a d¢ term and just one
frequency corresponding to /3, or three points per cycle. By inspection, we saw a
frequency of f/12, or 12 points per cycle. Of course, this is a horrendous frequency

error.

Fig. 4 shows the interpolation of the three given points to a total of 100. True
enough, we do find a frequency of 1/3, and we have three samples per cycle so
there is no aliasing going on. N
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Fig. 4 DFT interpolation of three points fits the points with a frequency of fi/3,
the only DFT harmonic available. We would prefer a frequency of f¢/12.

Comment 4 Prony's Method

We have seen above that for a very smail number of samples, the DFT can give
a frequency that is not the "correct” one we know or suspect. We got a frequency
that was fs/3 with the DFT while we were looking for f/12.  We can get exactly the
right answer by using a procedure that uses an exponential model (the signal is
assumed to be the sum of exponentially decaying sinusocidal signals). This
sinusoidal assumption is information beyond what the DFT had as input. Here we
use the prony.m program from the appendix. Fig. 5 shows a typical example of
Prony’s method (an example more general that a single sinusoidal waveform).

We can apply prony.m to our three samples 0, 0.5, and V3/2. Actually we will
need a fourth sample for this case. The reason we need a fourth sample is because
the program assumes decaying sinusoidals, and the fourth sample is needed to
determine the decay parameter (determine that it is not decaying in this case). Fig.
6 shows the result of applying the second-order Prony model to the samples 0, 1/2,
V3/2,and 1. This gives us exactly the right frequency of f/12.
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Fig. 5 Typical Prony Example

This figure shows the results
obtained with the example
suggested in the help file for
prony. m in the appendix:

n=0:15
x=0.5%sin(2*pi*n/12)
+(0 99.%n) *cos(2*pi*n/6 2)
+0.97 *n
[poles,coeff,ampl,radii,freq,phase]=prony(x,5)

The program chooses 10 samples of
x (Fig. 5a) and solves for the poles
(Fig. 8b). Using initial conditions, the
sequence can then be reconstructed
to the original 18, and indefinitely
beyond (to 45 samples in Fig. 5¢)




| = -
Fig. 6c y (and no
- lead to construction of additional terms of the sequence.
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Fig. 6 Prony for 4 Samples

Prony’s method as in Fig. 5
here applied to the four
samples of the sinusoidal
sequence. The result is
2"_Order (two poles).

i -
damping), initidl conditions




APPENDIX

DTFTVIEW View the DTFT and DFT of a Sinusoidal Waveform

dtftview(freqg, N}
PRt TNTsRO 2% R5%955%%553%%%
ion dtftview(freqg, N)

freg=frequency (normally 0 to 1/2)

N = number of DET points to show
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This program computes N points of a sinewave of
frequency £, and then it plots dense samples (100:1)
of the same sinewave xt. =x=n (stemmed) and xt (dashed)
are plotted in the top subplot.

A third time-domain waveform is dbmputed, Xz 1s a
zero-padded {100:1) version of xn, the zeros being
added to the end of xn.

The FFT's (DET's) of xn and of xz are computed.

Xn <-—-——- > XK

Kz  Lm———- > X2z
and are displayed, XK {stemmed) and XZ (dashed) in the
botton subplot. We understand ¥XZ to zepresssent the DTET
of xn while XK is the DET (sampled DTET).

Note that xt is in some sense an "interpolation" of zn
and that XZ is in some sense an "interpelation” of XK,
but XZ is not the DET of xt.

Examples:

dtftview(2/12,12) gives the DET of 12 samples
representing exactly two full sinewave cycles,
and k=2 and k=10 are the only non-zero DFT values.
The DET samples the DTET at all k=0....11

dtfiview(2.3/12,12 gives the DFT of 12 samples
representing 2.3 cycles. The DTET peaks at about
k=2.3, but the DFT samples in at the integers. The
DET is non-zexo for all integers k. This is what
is called "leakage."

dtftview(2/12,13) also shows leakage
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:.01:N~0.01;
¥n=sin(2*pi*freg*n);
‘xt=sin(2*pi*freg*t);

- figure(l)

subplet (211)

plot (t,xt, 'g--")

hold on

plot(n,xn, 'o")

axis([-1 N+1 -1.2 1.273);
hold off

xlabel{'time index n of signal---->')
figure{l)

% Zero-pad xn 100:1 to get xz and compute FET's (DET's)
xz=[xn zeros{l,%9*N)];

XK=fft (xn);

XZ=fft(xz);

k=0:N-1;

fa=0:.01:8N-0.01;

subplot (212)

plot(k,abs{XK), 'o"}

held on

plot{fa,abks(XZ),'r—-")

hold off )
xlabel ("frequency index k of DET---->')
grid on ’

mx=max{ [abs (XK) abs(XZ)]):
axis([=-1 N+1 -1 mx+1]};
figure(l)

DFTINTRP Interpolate with DFT

function y=dftintrp(x,N)

% function y=dftintrp (x,N)

$ % is input x(n)

% N = number cof points to interpolate to

%

% This program interpolates x(n} with length as given

% to y(n) of length N. The interpolation is through-

% the use of the DFT, by insexrting zeros in the centerx

$ of the DET. In the case of even length for x, there is
% a center term that must be split in two and separated.
%

% The resulting interpolation is viewed as a dense set

% of samples corresponding to a continucus time signal

% that is composed of the DET harmonics, and which goes
% through the given points.

%
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% examples: y = dftintrp({0 1 2 3 4 5 6],100)

% DET bandlimited interpclation of a ramp
% y = dftintrp(sin(2*pi*[0:2]/12),100)

% Interpolation of sinewave segment

% y = dftintrp(sin(2*pi*[0:11]/12),10Q0)

% Interpelation of full cycle

%

% B. Hutchins : Spring 2006

L=length(x):
X=fft (x):

% O0dd length - just insert zeros in middle off FFT
if mod(L,2)==1

%

XR=[X{1: (L+1)/2) zeros(l, (N-L)) X((L+3)/2:1L)];
xr=(N/L) *real (i£ft (XR))

plot ([0:N-1], xx)

hold on

pv=(N/L)*[0:L-1}; -

plot(pv,x,'0")

hold off #

axis{[-round{0.02*N) round(l.02*N) 1.1*min{xr)-0.0% 1l.1*max(xr)+0.05])

[+}

o

o

end

% Even length - split middle term and insert one fewer zero

if mod(L,2)==0

%

KR=[X(1: (L/2)} X{(L+2)/2Y/2 zeros(l, (N-L-1})) X ((L+2)/2)/2 X((L+4)/2:L)1;
xr=(N/L) *real (1fft (XR)};

plot ([0:N-1],xz)

hold on

pv={(N/L)*[0:L-1];

plotipv,x,"0")

hold off

axis([-round({0.02*N} round(l.02*N) 1.1l*min(xr}-0.05 1.1*max(xx)+0.05])

Qo

o

Ll

end

xlabel {'time index (expanded) ---->') i
figure{l)

Y=XI;
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PRONY

function [poles,coeff, ampl,radii, freqg, phase]l=prony(x,N)
LR R R R R A R R T R TR T R T
% function [poles,coeff,ampl,radii, freq, phase]l=prony{x,N)

%

3 PRONY MODELING

%

% QUTPUT

% £ = frequencies of poles

% 4 = radii of poles

% c = coefficients

% P = phases

% INPUT

% X = original signal

% N = number of poles to try

%

% Example:

% n=0:15

% x=0.5*sin(2*pi*n/12)+{0.99.7n).*cos(2*pi*n/6.2)+0.97."n
% [poles,coeff,ampl,radii, freq,phase]l=prony(x,5)
% .

R R LR R R PR R R R R TR R L R R Lt A

EEE AR R LR SRR A R R I R PR R ER L R R

% B. Hutchins 1994 2001 2006 Cornell Univ.
LR A R R R R R R R R R R E R R LR R R TR

clf

% Compute Length 2N Signal Vector for Model
% Extract x1 from full x

idx=1:2*N;

x1=x{1:2*N);

$ Look at input

% Plot Input x and selected samples x1 as *
figure (1)

plot(x)

hold on

plot{idx,x1,'*")

xrng=(max (X)-min(x) ) /10;

axis ([0 length{x)+l min(x)-xrng max{x}+xrng]);
hold off

title("Input, and Samples to be Used *')

PRONY METHOD PART 1, Find the Poles
giving frequency and decay constants

Solve for Difference Equation Ceoefficients

%
%
%
%
% Set Up Matrix b and Vector dl
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for K=1:N
dl (K)=x1 (N+K) ;
for L = 1:N
b{K,L)=x1{K+L-1);
4 end
end
% Solve for Coefficients a
a = inv{b)*dl';

% Find Poles

d=[=-a',1];

d=fliplx (d); % denominatecr of network = char.
poles=roots(d); % poles

r=abs (poles); % pole radii

an=angle({pcles); % pole angles

figure(2)

% Plot poles

pl=rocots(d};
“pmax=max([abs(real (pl)); abs(imag(pl)}]};

sc=ceil (pmax)+0.1;

n=0:500;

rl=exp{j*2*pi*n/500);

plot{xl,'g")

grid

hold on

plot (realpl),imag(pl), "x"}

heold off

axis('equal')

axis ([-sc sc =-sc sc])

% end plotting of poles

f=(an/(2*pi}); % actual pole frequencies
% END PART 1

$
%
% PRCNY METHOD PART 2, Apply Initial Conditions
% to find amplitude and phase
for K=1:N
for L = 1:N )
cc(K,L)y=poles{L)"™(K~1);
end
end
for K=1:N
g{K)=xL(K};
end

c=inv(cc)*g';
magc=abs{c};
% END PART 2
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2 Test Recconstruction to length 10N
for K=1:10%*N
xxr (K)=0;
for L=1:N
xr (K)=xr (K) +c (L) *poles (L)~ {K-1);
end
end
xr=real (xxr);

% PLOTS
figure(3)
plot(x, "g')
hold on
pvi=[1l:2*N];

Xy l=xr (1:2*N);

plot{pvl,xxl, "o}

pv2=[ (1+2*N) : (L+10*N=-1)7;

xr2=xr ({2*N+1) : length{xx) ) ; -
plot(pv2,xx2, "+'") .
lpvl=lengthipvl);

pvZp=[pvl {lpvl), pv2];
xx2p=[xrl{ipvi), =xr2l;

plot (pv2p, xx2p, "' ');

plot {[0 10*N], {0 0],'c")
mx=max{[xxrZ2 x]):;

mn=min{[xr2 x]);

rg=0.1* {mx-mn) ;

axis ([0 length(xr2)+5 mn-rg mx+zrgl):
hold off

% phase relative to a cosine input
p=360*angle(c)/ (2*pi);

radii=r;
coeff=c;
ampl=2*abs (coeff);
% correct amplitude for real poles
for k=1:N
if abs(imag (poles{k))}<0.000001
ampl (k) =ampl (k) /2;
end
end
freg=£f;
phase=p;
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