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INTRODUCTION 
 
     What is the relationship between the Fourier Series and the DFT?  Can the 
Fourier Series coefficients be computed from the DFT? 
 
 
Comment 1:   DFT as an Aliased Fourier Series 
 
     First, note that the DFT and the Fourier Series are certainly not the same thing, a 
fact that is apparent from the equations below.  The complex Fourier Series 
equations are: 
 
                            P/2 

     c(k) = (1/P)    ∫    f(t) e-2πjkt/P dt             Fourier Series coefficients (analysis)     (1a) 
                        -P/2   

 
                ∞ 

     f(t) =   ∑    c(k) e 2πjkt/P                       Fourier Series sum (synthesis)               (1b) 
              k= -∞ 
                
while the DFT equations are: 
 
                  N-1 

     X(k) =   ∑     x(n) e-j(2π/N)nk                 DFT (analysis)                                         (2a) 
                  n=0 

 
                           N-1 

      x(n) = (1/N)  ∑   X(k)e j(2π/N)nk           Inverse DFT (synthesis)                          (2b) 
                           k=0  

 
All comparisons of the various "Fourier Transform Pairs" show remarkable 
similarities, and also important differences.   A notably similarity here is that the two 
synthesis equations are sums of complex exponentials weighted by coefficients that 
correspond to discrete harmonic frequencies.  Can we relate c(k) to X(k)? 
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     Since f(t) is a continuous-time waveform, it can be sampled at t=nT to give x(n) 
 
                                    ∞ 

     x(n) = f(t=nT) =      ∑   c(m)e 2πjmnT/P                                                                                                 (3a) 
                                   m=-∞ 

 
and it is useful here to consider the special case of P=NT so that we have samples 
of exactly one period of f(t).  Thus: 
 
                         ∞ 

          x(n) =    ∑  c(m) e 2πjmn/N                                                                              (3b) 
                      m = -∞ 

 
We can take the DFT of this x(n) to give: 
 
                          N-1             ∞   

          X(k) =      ∑        ∑   c(m) e 2πjmn/N  e-j(2π/N)nk                                                                         (3c) 
                          n=0         m = -∞ 

 
combining exponentials and rearranging summations: 
                           ∞                                N-1 

          X(k) =      ∑      c(m)       ∑  e j(2π/N)(m-k)n                                                            (3d) 
                         m = -∞                          n=0 

 

and we know that: 
                        N-1                                               

                        ∑ e j(2π/N)(m-k)n   =         N if (m-k)= 0 mod N,        0   else               (‘A’) 
                        n=0       
                                          
We thus end up with  
                           ∞ 

          X(k) = N   ∑    c(k+mN)                                                                               (3e) 
                         m = -∞ 

 

     We could perhaps have pretty much guessed at least the general form of this 
result based on sampling theory.  We know that c(k) is the "spectrum" of the 
continuous waveform and sampling replicates this spectrum about all multiples of 
the sampling frequency.  In general the Fourier Series is not bandlimited, so we 
expect frequency aliasing.  With the sampling condition P=NT, the aliased 
frequencies exactly overlap the originals.   The DFT samples this spectrum at the 
same frequencies (k/NT).  So a DFT is an aliased Fourier Series. 
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     First of all, we can see that this is not an efficient way to compute the DFT!   
Further, it suggests that we are not going to be able to exactly compute the Fourier 
Series coefficients from the DFT, due to the aliasing.   About all we can argue is that 
since the c(k) generally fall off as 1/k or as 1/k2, and because N may be quite large, 
it may be true that: 
 
     c(k)  ≈ (1/N) X(k)                                                                                                  (4) 
 
and this may be good for at least the smaller values of k.   We make N large [take a 
lot of samples for one period of f(t)] and don't trust the results except for k small 
relative to N. The method is definitely going to fail if k approaches N, no matter how 
large N is.   However, the first few values might be all we need to know.   Perhaps 
we are just checking our hand calculations. 
 
 
Comment 2:  Fourier Series of a Piecewise Constant Waveform 
 
     It should be no surprise that the N samples x(n) from which the DFT X(k) is 
obtained do not contain enough information to calculate the c(k).  This is first 
because we can imagine an infinite number of functions f(t) that pass through 
x(n)=f(nT), and the integral used for c(k) accommodates these different functions, 
while all have the same samples x(n).  Secondly, how could an infinite number of 
c(k) ever be obtained from just N values of X(k)? 
 
     However, in one case, of some practical interest, we can get the c(k) exactly.   
This is the case where f(t) between the samples is held at the value of the samples.  
This is what we call a "hold" operation, and it is generally what we expect when we 
output a sequence of numbers to a D/A converter, and in similar cases.  Indeed, 
many engineers think of a sequence x(n) as "really" being a sequence of steps.   In 
this case, there is no additional information that is "hidden" between the samples, 
and we should have everything we need.  In addition, this stepped approximation 
gets around the problem of the infinite number of c(k) through the periodicity of X(k), 
as we shall see. 
 
     Since we want to use the DFT, indexed on 0 to N-1, it is convenient to calculate 
Fourier Series coefficients on the interval 0 to P rather than from -P/2 to P/2.    
 
 
                            P 

     c(k) = (1/P)   ∫   f(t) e-2πjkt/P dt                                                                             (5a) 
                         0   
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Now f(t) is a constant x(n) for time t=nT to t=(n+1)T so the integral is broken into a 
sum of smaller integrals: 
 
                             N-1                          (n+1)T 

     c(k) = (1/NT)   ∑      x(n)     ∫         e -jk(2π/NT)t   dt                                               (5b)                     
                            n=0                       nT 

   
 
The sub-integrals of exponentials are evaluated at their endpoints giving us: 
 
                       N-1 

      c(k)   =      ∑   x(n) e -j(2π/N)nk  (1 - e-jk(2π/N) ) / (2πjk) 
                       n=0 

 
               =  X(k) F(k)                                                                                              (5c) 
 
 
where X(k) is exactly the DFT of x(n), and F(k) is a spectral shaping function: 
 
     F(k) = [  (1 - e -jk(2π/N)) / (2πjk) ] 
 
            = (1/N) e-jkπ/N [ sin(πk/N) / (πk/N) ]                                                                 (6) 
 
 
      There is a lot here.   We note that c(k) was needed for all k, so X(k) is also 
needed for all k, not just for the usual k=0 to N-1.  Of course, X(k) is actually 
periodic for all k, so we find that c(k) is the periodic repetition of X(k), but now 
shaped by the non-periodic function F(k).  We also recognize the shaping function 
F(k) to be basically a familiar sinc function, the roll-off of a hold of duration T.  
 
     One easy test of these equations would be to choose a simple piecewise 
constant function and see if it gives the known Fourier Series coefficients and if the 
series based on these coefficients tends to the original function.   For example, a 
continuous time square wave could be represented by a piecewise constant 
function of length-two with x(0)=1 and x(1)=-1.   Alternatively, we should be able to 
use a length-four sequence with x(0)=1, x(1)=1, x(2)=-1, x(3)=-1, and also get the 
same answer.  This can be verified by running the program code, sqtest.m given 
here. 
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                                 PROGRAM TO TEST FOURIER SERIES 
 
%sqtest.m 
%  Test Fourier Series of Piecewise Constant  
%     as Obtained from the DFT 
 
% Length 2 
x=[1 -1] 
X=fft(x) 
X=[X X X X X X X X X X]    % repeat for 19 coeffs 
X=X(2:20)             % shift for c(0) at X(0) 
k=-9:9 
Fk=(1/2)*exp(-j*pi*k/2).*sinc(k/2) 
ck=X.*Fk 
% Sum for 19 coefficients 
t=0:pi/100:2*pi; 
f=zeros(1,201); 
for k=-9:9 
  f=f+ck(k+10).*exp(2*pi*j*k*t/(2*pi)); 
end 
figure(1) 
plot(t,f) 
 
 
 
% Length 4 
x=[1 1 -1 -1]     % other length 4 may be tried 
X=fft(x) 
X=[X X X X X X] 
X=X(4:22)         % shift for c(0) at X(0) 
k=-9:9 
Fk=(1/4)*exp(-j*pi*k/4).*sinc(k/4) 
ck=X.*Fk 
 
t=0:pi/100:2*pi; 
f=zeros(1,201); 
for k=-9:9 
  f=f+ck(k+10).*exp(2*pi*j*k*t/(2*pi)); 
end 
figure(2) 
plot(t,f)  
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   Using sqtest.m, this is what figure(1) or figure(2) looks like 
 
 
 
Comment 3:  A Stepped Sinewave 
 
     While it is a bit difficult to imagine that DSP engineers makes frequent use of 
Fourier Series, and most such series that are needed are tabulated, the case of a 
stepped approximation to a sine wave is an example of one that is not tabulated.  
We would need to know this Fourier Series if we wanted to know the harmonic 
distortion in a stepped sine wave. 
 
     We are quite familiar with the idea of a stepped approximation to a sine wave.  
For example, a look-up table can be read and fed to a D/A converter (an inherent 
hold) to form a digital sinewave generator with analog output.  In such a case, 
intuitively we know that it is best to have a large number of samples per cycle.  But 
just how much distortion do we expect for a given N?   
 
     We know that the length-N DFT of a sinusoidal sequence of exactly N samples 
per cycle will have non-zero values only for k=1 and k=N-1.   Further, we have seen 
that in order to get the Fourier Series coefficients, we have only to repeat this DFT 
and shape the amplitudes with the sample-and-hold sinc function.   
 
           H(k) = [ sin(πk/N) / (πk/N) ]                                                                            (7) 
 
We notice that there is spectral energy only for harmonics k=1 (the fundamental - 
the sinewave we want) and for the values of k of N-1, N+1, 2N-1, 2N+1, 3N-1, 
3N+1, and so on.  All of these have exactly the same magnitude for the sin(πk/N) 
contribution to the shaping function H(k).  As a result, the harmonics roll off as 1/k.   
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     We can compute the Total Harmonic Distortion (THD) as: 
                                                                                    
      THD = [A2

2 + A3
2  + A4

2 +....]1/2 / A1                                                                     (8)                     
 
where the Ak are the amplitudes of the harmonics k.  Because this is a ratio, all 
constant scaling factors, including sin(πk/N) cancel top and bottom, and we end up 
with: 
 
     THD = [1/(N-1)2 + 1/(N+1)2 + 1/(2N-1)2 + 1/(2N+1)2 + .....]1/2                                            (9) 
 
and for large N, we can approximate: 
 
      1/(mN-1)2 + 1/(mN+1)2 approx  2/(mN)2                                                                                        (10) 
 
so the THD is approximately: 
 
     THD  ≈  [ (2/N2) (1/12 + 1/22 + 1/32 +.......) ]1/2                                                                             (11) 
 
and since the series 1 + 1/4 + 1/9 + 1/16 +..... = π2/6, 
 
     THD  ≈  π / (√3 N)                                                                                              (12) 
 
     Here we see some useful results.   We first note that the THD only divides by 2 if 
the number of samples per cycle doubles; not a great improvement.  But we also 
see that the first harmonic above the fundamental is at N-1, and it is perhaps  
surprising that there is so much open spectrum here.   And, doubling N moves the 
harmonic about twice as far away.  This is a significant improvement in that it’s that 
much easier to filter out the harmonics even with very weak analog filtering.   
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