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CALCULATING THE BIT-SAVING ACHIEVED WITH NOISE-SHAPING

The usual (first-order) “noise shaping” filter [1,2] is of the form:

Hz)=1-2" (1)
which is a simple high-pass with a zero at z=1. In the case of an k™ order noise
shaper, we have H(z)k. For practical purposes, only k=1 and k=2 (as achieved with
the noise-shaping structure) are likely to be sufficiently stable to be useful.

The magnitude of the frequency response of H(z) is just:

IH@Z)| =[ (1-e™)(1-¢")1"* = 2 - 2cos(w) 1" (2)

Because we will be interested in how a noise shaping filter will modify the power in the
spectrum, we find it convenient to work with the squared magnitude of H(z):

HZ)* =[ (1-e™)(1-e®) ] =[2 - 2cos(w) ] =4 sin*(w/2) (3)
which for a k™ order noise shaper is:
H@)[* =[ (1-e7)(1-e*) |* =[ 2 - 2cos(w) |¥ = 4*sin®(w/2) (4)

Fig. 1 shows the relevant functions. Now, we are interested in finding the area under
this curve from w=0 to some frequency that is  divided by the oversampling factor. If
we have m octaves of oversampling, this upper frequency is n/2™.

Here we will find it convenient to approximate the sine by its argument because we
are interested mainly in fairly large oversampling factors. Thus we want the integral:

/2™ /2"

p= I4ksin2k(w/2) dw =~ f4k (W2 dw = (/2™ [ (2k+1) (5)
0 0

This we want to compare to the non-oversampleing, no-noise-shaping case.
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Fig. 1 First- and Second-Order Noise Shaping Curves

so we have p/py as:
plpo = 7/ [ (2"*)(2k+1) ] (7)

Now, this reduction of noise power could also have been achieved if we had added AB
bits of resolution to the signal, which would reduce the noise power by 28, so

228 = plp = /[ (27 )(2k+1) ] (8)
Taking the log base 2 of both sides:
-2AB = Loga[n?/(2k+1)] — Logy[ 2™+ 1] (9)

or.
AB = (1/2) Logy[ 2™*M — (1/2) Loga[n®/(2k+1)]

= m(k+1/2) — (1/2) Loga[n®/(2k+1)] (10)
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This is the details of a result quoted in Orfanidis [1] and given in part in a previous
Application Note No. 345 [2].

{Note: Please check any copies of AN-345 you may have. We have come across
copies that have Logom instead of m in equation (9) of that AN, equivalent to equation
(10) here. We are defining m as “octaves.” If it were the oversampling factor here,
then the Log, would be correct. While our originals and the copies we are currently
shipping are correct, it is possible that a few copies were made from an earlier
incorrect version, for which we apologize.}

We mentioned that Orfanidis used a reasonable approximation of sin(x)~x for small
X. Because we really are interested in only k=1 and k=2, we can do the exact
problem using tabulated integrals [3].
/2™

p= OI 4%sin*(w/2)dw (11)

For which the k=1 case gives us:

/2™

py = J 4 sinff(w2)dw = 2[n/2™ - sin(m/2™) ] (12)
0

while the k=2 case gives us:

/2™
P2 = I 4%sin*(w/2)dw = 61/2™ — 8sin(n/2™) + sin(2n/2™) (13)
0

Accordingly we have only to plug in the value of m to p = p4 or p2, and calculate the
added bits as :

AB = -(1/2) loga(p/x) (14)

Table 1 shows the results of calculations using the exact formulas, equations (12) and
(13), the Orfanidis formula, equation (10) and the “Hauser Rule of Thumb” [4]. [This
rule is that first-order gives 1.5 bits/octave with a one-bit penalty, while second order
gives us 2.5 bits/octave with a 2 bit penalty.] Since most practical cases will involve
at least a factor of 16 of oversampling, we see excellent agreement regardless of the
formulas used.
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TABLE 1

Bit Savings for First- and Second-Order Noise Shaping
for m Octaves of Oversampling

Octaves of Oversampling

!

! First-Order Noise Shaping Second-Order Noise Shaping

! Exact Orfanidis Hauser Exact Orfanidis Hauser
m=0 -0.5000 -0.8590 -1.0000 -2.1420 0 -2.0000
m=1 0.7302 0.6410 0.5000 0.5704 0.5704 0.5000
m=2 2.1632 2.1410 2.0000 2.9110 2.9110 3.0000
m=3 3.6465 3.6410 3.5000 5.3712 5.3712 5.5000
m=4 5.1424 5.1410 5.0000 7.8613 7.8613 8.0000
m=5 6.6413 6.6410 6.5000 10.3588 10.3588  10.5000
m=6 8.1411 8.1410 8.0000 12.8582 12.8582  13.0000
m=7 9.6410 9.6410 9.5000 15.3580 15.3580 15.5000
m=8 11.1410 11.1410 11.0000 17.8580 17.8580  18.0000
m=9 12.6410 12.6410 12.5000 20.3580 20.3580 20.5000
m=10 14.1410 14.1410 14.0000 22.8580 22.8580 23.0000
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