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                       CALCULATING THE BIT-SAVING ACHIEVED WITH NOISE-SHAPING 
 
 
     The usual (first-order) “noise shaping” filter [1,2] is of the form: 
 
               H(z) = 1 – z-1                                                                                                                                                (1) 
 
which is a simple high-pass with a zero at z=1.   In the case of an kth order noise 
shaper, we have H(z)k.   For practical purposes, only k=1 and k=2 (as achieved with 
the noise-shaping structure) are likely to be sufficiently stable to be useful. 
 
     The magnitude of the frequency response of H(z) is just: 
 
             |H(z)|  =[ (1-e-jω)(1-ejω) ]1/2 = [ 2 - 2cos(ω) ]1/2                                                                          (2) 
 
Because we will be interested in how a noise shaping filter will modify the power in the 
spectrum, we find it convenient to work with the squared magnitude of H(z): 
 
             |H(z)|2  =[ (1-e-jω)(1-ejω) ]  = [ 2 - 2cos(ω) ]   = 4 sin2(ω/2)                                (3) 
 
which for a kth order noise shaper is: 
 
             |H(z)|2k  =[ (1-e-jω)(1-ejω) ]k  = [ 2 - 2cos(ω) ]k  = 4ksin2k(ω/2)                           (4) 
 
Fig. 1 shows the relevant functions.  Now, we are interested in finding the area under 
this curve from ω=0 to some frequency that is π divided by the oversampling factor.  If 
we have m octaves of oversampling, this upper frequency is π/2m.   
 
     Here we will find it convenient to approximate the sine by its argument because we 
are interested mainly in fairly large oversampling factors.  Thus we want the integral: 
 
              π/2m                                                             π/2m

     p =    ∫ 4ksin2k(ω/2) dω   ≈  ∫ 4k (ω/2)2k dω   =    (π/2m)(2k+1) / (2k+1)                     (5) 
             0                                                   0 

 
This we want to compare to the non-oversampleing, no-noise-shaping case.             
           
                 π  

     p0 =    ∫ 1 dω   =  π                                                                                                 (6)                    
               0 
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      Fig. 1   First- and Second-Order Noise Shaping Curves 
 
 
 
so we have p/p0 as: 
 
      p/p0 =  π2k / [ (2m(2k+1))(2k+1) ]                                                                                (7)                    
 
Now, this reduction of noise power could also have been achieved if we had added ∆B 
bits of resolution to the signal, which would reduce the noise power by 2-2∆B, so 
 
               2-2∆B   =   p/p0   =     π2k / [ (2m(2k+1))(2k+1) ]                                                      (8) 
 
Taking the log base 2 of both sides: 
 
          -2∆B  = Log2[π2k/(2k+1)] – Log2[ 2m(2k+1)]                                                            (9) 
 
or: 
           ∆B  =  (1/2) Log2[ 2m(2k+1)] – (1/2) Log2[π2k/(2k+1)]  
 
                  =   m(k+1/2)  – (1/2) Log2[π2k/(2k+1)]                                                       (10) 
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This is the details of a result quoted in Orfanidis [1] and given in part in a previous 
Application Note No. 345 [2].   
 
 {Note:  Please check any copies of AN-345 you may have.  We have come across 
copies that have Log2m instead of m in equation (9) of that AN, equivalent to equation 
(10) here.  We are defining m as “octaves.”  If it were the oversampling factor here, 
then the Log2 would be correct.  While our originals and the copies we are currently 
shipping are correct, it is possible that a few copies were made from an earlier 
incorrect version, for which we apologize.} 
 
     We mentioned that Orfanidis used a reasonable approximation of sin(x)≈x for small 
x.   Because we really are interested in only k=1 and k=2, we can do the exact 
problem using tabulated integrals [3].   
 
               π/2m

     p =    ∫    4ksin2k(ω/2)dω                                                                                       (11) 
             0 

 

For which the k=1 case gives us: 
 
               π/2m

     p1 =    ∫    4 sin2(ω/2)dω     =  2 [ π/2m – sin(π/2m) ]                                              (12) 
             0 

 while the k=2 case gives us: 
 
               π/2m

     p2 =    ∫    42sin4(ω/2)dω  = 6π/2m – 8sin(π/2m) + sin(2π/2m)                                 (13) 
             0 

 
Accordingly we have only to plug in the value of m to p = p1 or p2, and calculate the 
added bits as : 
 
       ∆B  =    -(1/2) log2(p/π)                                                                                        (14) 
 
     
 Table 1 shows the results of calculations using the exact formulas, equations (12) and 
(13), the Orfanidis formula, equation (10) and the “Hauser Rule of Thumb” [4]. [This 
rule is that first-order gives 1.5 bits/octave with a one-bit penalty, while second order 
gives us 2.5 bits/octave with a 2 bit penalty.]   Since most practical cases will involve 
at least a factor of 16 of oversampling, we see excellent agreement regardless of the 
formulas used.     
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                                                          TABLE 1 
 
                        Bit Savings for First- and Second-Order Noise Shaping 
                                          for m Octaves of Oversampling 
 
Octaves of Oversampling 
  ↓ 
  ↓            First-Order Noise Shaping                  Second-Order Noise Shaping
  ↓          Exact       Orfanidis    Hauser                Exact       Orfanidis    Hauser 
 
m=0   -0.5000   -0.8590   -1.0000        -2.1420         0   -2.0000 
m=1    0.7302    0.6410    0.5000         0.5704    0.5704    0.5000 
m=2    2.1632    2.1410    2.0000         2.9110    2.9110    3.0000 
m=3    3.6465    3.6410    3.5000         5.3712    5.3712    5.5000 
m=4    5.1424    5.1410    5.0000         7.8613    7.8613    8.0000 
m=5    6.6413    6.6410    6.5000        10.3588   10.3588   10.5000 
m=6    8.1411    8.1410    8.0000        12.8582   12.8582   13.0000 
m=7    9.6410    9.6410    9.5000        15.3580   15.3580   15.5000 
m=8   11.1410   11.1410   11.0000        17.8580   17.8580   18.0000 
m=9   12.6410   12.6410   12.5000        20.3580   20.3580   20.5000 
m=10  14.1410   14.1410   14.0000        22.8580   22.8580   23.0000 
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