March 2006

CALCULATING THE BIT-SAVING ACHIEVED WITH NOISE-SHAPING

The usual (first-order) "noise shaping" filter [1,2] is of the form:

$$H(z) = 1 - z^{-1} \tag{1}$$

which is a simple high-pass with a zero at z=1. In the case of an k^{th} order noise shaper, we have $H(z)^k$. For practical purposes, only k=1 and k=2 (as achieved with the noise-shaping structure) are likely to be sufficiently stable to be useful.

The magnitude of the frequency response of H(z) is just:

$$|H(z)| = [(1-e^{-j\omega})(1-e^{j\omega})]^{1/2} = [2-2\cos(\omega)]^{1/2}$$
 (2)

Because we will be interested in how a noise shaping filter will modify the power in the spectrum, we find it convenient to work with the squared magnitude of H(z):

$$|H(z)|^2 = [(1-e^{-j\omega})(1-e^{j\omega})] = [2-2\cos(\omega)] = 4\sin^2(\omega/2)$$
 (3)

which for a kth order noise shaper is:

$$|H(z)|^{2k} = [(1-e^{-j\omega})(1-e^{j\omega})]^k = [2-2\cos(\omega)]^k = 4^k \sin^{2k}(\omega/2)$$
 (4)

Fig. 1 shows the relevant functions. Now, we are interested in finding the area under this curve from ω =0 to some frequency that is π divided by the oversampling factor. If we have m octaves of oversampling, this upper frequency is $\pi/2^m$.

Here we will find it convenient to approximate the sine by its argument because we are interested mainly in fairly large oversampling factors. Thus we want the integral:

$$p = \int_{0}^{\pi/2^{m}} 4^{k} \sin^{2k}(\omega/2) d\omega \approx \int_{0}^{\pi/2^{m}} 4^{k} (\omega/2)^{2k} d\omega = (\pi/2^{m})^{(2k+1)} / (2k+1)$$
 (5)

This we want to compare to the non-oversampleing, no-noise-shaping case.

$$p_0 = \int_0^{\pi} 1 d\omega = \pi \tag{6}$$

Fig. 1 First- and Second-Order Noise Shaping Curves

so we have p/p₀ as:

$$p/p_0 = \pi^{2k} / [(2^{m(2k+1)})(2k+1)]$$
 (7)

Now, this reduction of noise power could also have been achieved if we had added ΔB bits of resolution to the signal, which would reduce the noise power by $2^{-2\Delta B}$, so

$$2^{-2\Delta B} = p/p_0 = \pi^{2k} / [(2^{m(2k+1)})(2k+1)]$$
 (8)

Taking the log base 2 of both sides:

$$-2\Delta B = Log_2[\pi^{2k}/(2k+1)] - Log_2[2^{m(2k+1)}]$$
 (9)

or:

$$\Delta B = (1/2) \log_2[2^{m(2k+1)}] - (1/2) \log_2[\pi^{2k}/(2k+1)]$$

$$= m(k+1/2) - (1/2) \log_2[\pi^{2k}/(2k+1)]$$
(10)
$$AN-363 (2)$$

This is the details of a result quoted in Orfanidis [1] and given in part in a previous Application Note No. 345 [2].

{Note: Please check any copies of AN-345 you may have. We have come across copies that have Log₂m instead of m in equation (9) of that AN, equivalent to equation (10) here. We are defining m as "octaves." If it were the oversampling factor here, then the Log₂ would be correct. While our originals and the copies we are currently shipping are correct, it is possible that a few copies were made from an earlier incorrect version, for which we apologize.}

We mentioned that Orfanidis used a reasonable approximation of $sin(x) \approx x$ for small x. Because we really are interested in only k=1 and k=2, we can do the exact problem using tabulated integrals [3].

$$p = \int_{0}^{\pi/2^{m}} 4^{k} \sin^{2k}(\omega/2) d\omega$$
 (11)

For which the k=1 case gives us:

$$p_1 = \int_{0}^{\pi/2^{m}} 4 \sin^2(\omega/2) d\omega = 2 \left[\pi/2^{m} - \sin(\pi/2^{m}) \right]$$
 (12)

while the k=2 case gives us:

$$p_2 = \int_0^{\pi/2^m} 4^2 \sin^4(\omega/2) d\omega = 6\pi/2^m - 8\sin(\pi/2^m) + \sin(2\pi/2^m)$$
 (13)

Accordingly we have only to plug in the value of m to $p = p_1$ or p_2 , and calculate the added bits as :

$$\Delta B = -(1/2) \log_2(p/\pi) \tag{14}$$

Table 1 shows the results of calculations using the exact formulas, equations (12) and (13), the Orfanidis formula, equation (10) and the "Hauser Rule of Thumb" [4]. [This rule is that first-order gives 1.5 bits/octave with a one-bit penalty, while second order gives us 2.5 bits/octave with a 2 bit penalty.] Since most practical cases will involve at least a factor of 16 of oversampling, we see excellent agreement regardless of the formulas used.

TABLE 1

Bit Savings for First- and Second-Order Noise Shaping for m Octaves of Oversampling

Octaves of Oversampling

↓ ↓ ↓	<u>First-C</u> Exact	Order Noise S Orfanidis	Shaping Hauser	<u>Second</u> Exact	-Order Noise Orfanidis	Shaping Hauser
m=0	-0.5000	-0.8590	-1.0000	-2.1420	0	-2.0000
m=1	0.7302	0.6410	0.5000	0.5704	0.5704	0.5000
m=2	2.1632	2.1410	2.0000	2.9110	2.9110	3.0000
m=3	3.6465	3.6410	3.5000	5.3712	5.3712	5.5000
m=4	5.1424	5.1410	5.0000	7.8613	7.8613	8.0000
m=5	6.6413	6.6410	6.5000	10.3588	10.3588	10.5000
m=6	8.1411	8.1410	8.0000	12.8582	12.8582	13.0000
m=7	9.6410	9.6410	9.5000	15.3580	15.3580	15.5000
m=8	11.1410	11.1410	11.0000	17.8580	17.8580	18.0000
m=9	12.6410	12.6410	12.5000	20.3580	20.3580	20.5000
m=10	14.1410	14.1410	14.0000	22.8580	22.8580	23.0000

REFERENCES

- [1] B. Hutchins, "Improved Signal/Noise Ratio with First-Order Noise Shaping: An Example," Electronotes Application Note No. 345, October 1997
- [2] S. Orfanidis, Introduction to Signal Processing, Prentice-Hall (1996) pp 67-73
- [3] CRC Standard Mathematical Tables, 25th Ed., CRC Press (1978)
- [4] M. Hauser, "Principles of Oversampling A/D Conversion," <u>J. Audio Eng. Soc.</u>, Vol. 39, No. 1/2, Jan/Feb 1991, pp 3-26.