
ELECTRONOTES APPLICATION NOTE NO. 363
1016 Hanshaw Rd
Ithaca, NY 14850 March 2006
607-266-8492

 CALCULATING THE BIT-SAVING ACHIEVED WITH NOISE-SHAPING

 The usual (first-order) “noise shaping” filter [1,2] is of the form:

 H(z) = 1 – z-1 (1)

which is a simple high-pass with a zero at z=1. In the case of an kth order noise
shaper, we have H(z)k. For practical purposes, only k=1 and k=2 (as achieved with
the noise-shaping structure) are likely to be sufficiently stable to be useful.

 The magnitude of the frequency response of H(z) is just:

 |H(z)| =[(1-e-jω)(1-ejω)]1/2 = [2 - 2cos(ω)]1/2 (2)

Because we will be interested in how a noise shaping filter will modify the power in the
spectrum, we find it convenient to work with the squared magnitude of H(z):

 |H(z)|2 =[(1-e-jω)(1-ejω)] = [2 - 2cos(ω)] = 4 sin2(ω/2) (3)

which for a kth order noise shaper is:

 |H(z)|2k =[(1-e-jω)(1-ejω)]k = [2 - 2cos(ω)]k = 4ksin2k(ω/2) (4)

Fig. 1 shows the relevant functions. Now, we are interested in finding the area under
this curve from ω=0 to some frequency that is π divided by the oversampling factor. If
we have m octaves of oversampling, this upper frequency is π/2m.

 Here we will find it convenient to approximate the sine by its argument because we
are interested mainly in fairly large oversampling factors. Thus we want the integral:

 π/2m π/2m

 p = ∫ 4ksin2k(ω/2) dω ≈ ∫ 4k (ω/2)2k dω = (π/2m)(2k+1) / (2k+1) (5)
 0 0

This we want to compare to the non-oversampleing, no-noise-shaping case.

 π

 p0 = ∫ 1 dω = π (6)
 0

 AN-363(1)

 Fig. 1 First- and Second-Order Noise Shaping Curves

so we have p/p0 as:

 p/p0 = π2k / [(2m(2k+1))(2k+1)] (7)

Now, this reduction of noise power could also have been achieved if we had added ∆B
bits of resolution to the signal, which would reduce the noise power by 2-2∆B, so

 2-2∆B = p/p0 = π2k / [(2m(2k+1))(2k+1)] (8)

Taking the log base 2 of both sides:

 -2∆B = Log2[π2k/(2k+1)] – Log2[2m(2k+1)] (9)

or:
 ∆B = (1/2) Log2[2m(2k+1)] – (1/2) Log2[π2k/(2k+1)]

 = m(k+1/2) – (1/2) Log2[π2k/(2k+1)] (10)

 AN-363 (2)

This is the details of a result quoted in Orfanidis [1] and given in part in a previous
Application Note No. 345 [2].

 {Note: Please check any copies of AN-345 you may have. We have come across
copies that have Log2m instead of m in equation (9) of that AN, equivalent to equation
(10) here. We are defining m as “octaves.” If it were the oversampling factor here,
then the Log2 would be correct. While our originals and the copies we are currently
shipping are correct, it is possible that a few copies were made from an earlier
incorrect version, for which we apologize.}

 We mentioned that Orfanidis used a reasonable approximation of sin(x)≈x for small
x. Because we really are interested in only k=1 and k=2, we can do the exact
problem using tabulated integrals [3].

 π/2m

 p = ∫ 4ksin2k(ω/2)dω (11)
 0

For which the k=1 case gives us:

 π/2m

 p1 = ∫ 4 sin2(ω/2)dω = 2 [π/2m – sin(π/2m)] (12)
 0

 while the k=2 case gives us:

 π/2m

 p2 = ∫ 42sin4(ω/2)dω = 6π/2m – 8sin(π/2m) + sin(2π/2m) (13)
 0

Accordingly we have only to plug in the value of m to p = p1 or p2, and calculate the
added bits as :

 ∆B = -(1/2) log2(p/π) (14)

 Table 1 shows the results of calculations using the exact formulas, equations (12) and
(13), the Orfanidis formula, equation (10) and the “Hauser Rule of Thumb” [4]. [This
rule is that first-order gives 1.5 bits/octave with a one-bit penalty, while second order
gives us 2.5 bits/octave with a 2 bit penalty.] Since most practical cases will involve
at least a factor of 16 of oversampling, we see excellent agreement regardless of the
formulas used.

 AN-363 (3)

 TABLE 1

 Bit Savings for First- and Second-Order Noise Shaping
 for m Octaves of Oversampling

Octaves of Oversampling
 ↓
 ↓ First-Order Noise Shaping Second-Order Noise Shaping
 ↓ Exact Orfanidis Hauser Exact Orfanidis Hauser

m=0 -0.5000 -0.8590 -1.0000 -2.1420 0 -2.0000
m=1 0.7302 0.6410 0.5000 0.5704 0.5704 0.5000
m=2 2.1632 2.1410 2.0000 2.9110 2.9110 3.0000
m=3 3.6465 3.6410 3.5000 5.3712 5.3712 5.5000
m=4 5.1424 5.1410 5.0000 7.8613 7.8613 8.0000
m=5 6.6413 6.6410 6.5000 10.3588 10.3588 10.5000
m=6 8.1411 8.1410 8.0000 12.8582 12.8582 13.0000
m=7 9.6410 9.6410 9.5000 15.3580 15.3580 15.5000
m=8 11.1410 11.1410 11.0000 17.8580 17.8580 18.0000
m=9 12.6410 12.6410 12.5000 20.3580 20.3580 20.5000
m=10 14.1410 14.1410 14.0000 22.8580 22.8580 23.0000

REFERENCES

[1] B. Hutchins, “Improved Signal/Noise Ratio with First-Order Noise Shaping: An
 Example,” Electronotes Application Note No. 345, October 1997

[2] S. Orfanidis, Introduction to Signal Processing, Prentice-Hall (1996) pp 67-73

[3] CRC Standard Mathematical Tables, 25th Ed., CRC Press (1978)

[4] M. Hauser, “Principles of Oversampling A/D Conversion,” J. Audio Eng. Soc.,
 Vol. 39, No. 1/2, Jan/Feb 1991, pp 3-26.

 AN-363 (4)

