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CUSTOMIZED HAMMING WINDOW
WITH FILTER DESIGN APPLICATIONS

1. INTRODUCTION:

In a previous note [1] (AN-319, "Subtle Design Considerations for Hamming
Windows," March 1992) we looked at a couple of refinements to the conventional
Hamming window. We emphasized that these refinements were not exceedingly
important, but we do learn an awful lot by looking at the issues involved, and we end up
by being able to say that we have done things right (at least carefully).

In comparison to the conventional procedure of calculating the Hamming window
[2,3] which results in two pairs of “lazy zeros” (four zeros close to, but not on the unit
circle) a correct procedure gives all zeros on the unit circle. The first corrective
measure it to assure that exactly one full cycle of the cosine is sampled (not one full
cycle plus one additional point), arid this puts two of the lazy zeros on the circle. The:
second corrective procedure, shifting samples by half a sample spacing, moves the
second lazy pair to the circle. Beyond this, it is possible to choose the window
parameters so that a pair of zeros is at a particular frequency. An additional interest
would be to see if and how the added zeros might be transferred to the filter in the case
where windowing is part of the filter design procedure.

2. GETTING RID OF THE LAZY ZEROS

2a: The Conventional Hamminq Window:

The conventional Hamming window definition [2, 3] suggests that the window is 92%
raised cosine on a 8% "pedestal" or, as in the Matlab function: '

W = 54 - 467cos(2*pi*(O:N-1)/(N-1)); - | -

Here we note that the cosine is evaluated at angular intervals of 2x/(N-1) from 0 to 2x.
The sample at 2= is the periodic repetition of the one at 0. This definition is a logical
‘implementation of a discrete-time Hamming window based on the sampling of a
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18 zeros (b). Four of the zeros are : _
“lazy” (not on the unit circle). These 10'E Magnitude DTFT
four lazy zeros account for the slight ‘ of the Window
indentation in the first sidelobe of W'k
the DTFT of the window (c), but do
not contribute well to the achievement w0l
of lower sidelobes. The DTFT has i
seven deep zeros, corresponding to ik
the seven zeros on the top (or
bottom) of the unit circle (b). Note A
that in (c) the first sidélobe (about (c)

0.12 to 0.21) is substantially wider

that the others.

continuous-time Hamming window, where the window parametérs are set to rounded
values (0.54 and 0.46), a logical enough starting compromise.

Fig. 1a shows a window calculated by this formula. Note that the end values are
both exactly 0.08 and the middle value, for odd length windows such as this length 19,
is exactly 1. The magnitude of the Discrete-Time Fourier Transform (DTFT) for this
window is shown in Fig. 1c. We note that the sidelobes of the wiridow peak at the 1%
leve! that is typically quoted for the Hamming window. The sidelobes look quite normal,
-except for the first one (about 0. 12 to 0.21) which has a curious indentation at about

0.14.

The length 19 window has 18 zeros as seen in Fig. 1b. Of these, 14 are on the unit -
. circle while four are in reciprocal and conjugate positions (required by the linear phase
even symmetry), not far from the unit circle. It is clear that these "lazy zeros" are
responsible for the indentation in the first sidelobe. We consider these zeros "lazy"
because they might as well be on the unit CIrcIe where they can do more good by -
reducmg sidelobe amplltudes : .
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cosines but is no longer symmetric,
In (b) we see an additional pair of w0k
unit circle zeros (16 of 18 now).
The DTFT show now eight deep w0
zeros, and a narrower main lobe.

Probably a better window, but the
broken symmetry may bother us.

_~original formula

-

2b: Get_tinq th.e_ Length Riqht

We note that one problem with the conventional definition is that we have sampied
the same point at both ends. One simple cure for this fault (which is an option in some
- current versions of Matlab) is to design the conventional window for length N+1 and
drop the last point. in fact, this does put one pair of lazy zeros to work, as we shall see.
A major'objection to stopping with this single repair might be that the window is no
longer linear phase, and if we apply this window to the linear phase impulse response of
a dlgltal fllter [4], the filter wull not be exactly Ilnear phase anymore.

Fig. 2a shows a length 19 Hammmg window derived from a length 20 window by
dropping the last value. Now the last value is 0.1049 instead of 0.08, and there is no
center value equal to 1, but rather two value 0f 0.9937. Note that the window is no
longer exactly even symmetric Fig. 2¢ shows the magnitude DTFT of this new
window. It has a somewhat narrower main lobe’ (probably a good feature) and an extra

- deep zero between the zeros at 0.11 and 0.21.  Indeed, the first sideldbe of the original
window (dotted line) seems to have been split in two. The DTFT has eight deep zeros .
instead of seven. In general, we see the sidelobes are still maxing at about 1%. Fig.
2b shows the zeros of the new window and we see that in fact, one palr of the lazy
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zeros has moved to the unit circle (16 on the unit circles now, with two lazy zeros
remaining). The: lazy zeros are un-reciprocated, a consequence of the destruction of
the even symmetry linear phase of the window.

2¢. Shifting by a Half Sample

It is now a simple matter to restore linear phase symmetry by shifting each sample
time by half the usual sample spacing. In terms of using the original formula, this is a
matter of calculating the window of length 2N+1 and then keeping every other sample,
starting with the second one, for a length N result. Such a length 19 window is shown in
Fig. 3a. The ends are both 0.0863, and the middle is exactly 1 again. From the -
magnltude DTFT of Fig. 3¢, we see another deep zero has appeared here about 0.13.
In fact, in the region from about 0.1 to about 0.15, the response is below about 0.6%,
and the remainder of the sidelobes are 0.8% or beiow due to the slightly tighter zero
spacing. Fig. 3d gives a more detailed view of the sidelobe region. The main lobe
remains in its somewhat narrower form (relative to the original formula). Thus we seem
to have a better window. It is not spectacularly better, but it is clearly better.

From Fig. 3b we see that now all 18 zeros are on the unit circle, so the second pair
of lazy zeros has moved to useful positions, and we understand the decreased _
sidelobe levels in terms of the denser clustering of zeros in the regions that are about
45 degrees either side of z=1. These better results have all been a consequence of the
way samples have been positioned. As yet, we have made no attempt to adjust the
window parameters from their original value of 0.54 and 0.46.

However, before leaving the issue of sample spacing and shifting, we note in Fig. 4
that the results for an even length (length 20 shown) window are essentially the same

as for odd léngth (length 19).

3. ADJUSTING THE CONSTANT RELATIVE TO THE RAISED COSINE

In Section 2 we looked for the best way to sample the raised cosine, and we
apparently found it. In consequence, we need to set this part of the problem aside -
indeed, there is no actual parameter to set or adjust with regard to this part of the
design. The remaining part of the design is to choose an appropriate proportions
between the constant and the raised cosine, the nuimbers set to §.54 and 0.46 in the
original formula, equation (1). By adjusting this ratio, we get to adjust one additiona!
performance feature - the position of one of the zeros. In particular, we choose to
p!ace one of the zeros at a specn‘red frequency

The Hamm:ng wmdow is obtamed by taking one full cycle of a ralsed cosine. Smce
we are talking about a discrete Hamming window, we think of truncating an infinite - '
duration raised cosine by multiplying it by a length N discrete rectangular window,
Accordingly, the DTFT of an infinite duration (discrete) raised cosine is convolved
with the DTFT of the discrete rectangular window. Both these DTFT’s.(ali DTFT's)
are periodic, so it is sufficient to convolve a single cycle. The DTFT of the raised
cosine consists of three discrete values, A, B, and A (Fig. 5, Fig. 7) the A values
being the “AC” term and B betng the “DC” term. We want the peak of the Hamming
window to be 1 SO: .
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Fig. 5 A single cycle of a “raised cosine” should be viewed as a raised cosine
- (infinite duratlon) multiplied by a rectangular window. The resuiting “Hamming
window” has two parameters, A and B. For the standard Hamming window,
2A=0.46 and B=0.54, usually called 92% raised cosine on an 8% “pedestal.”
Here we allow A and B to vary, looking for a better wmdow
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The DTFT of the rectangular window of length N is the "Periodic sinc” or "Dirichlet"
function (Fig. 6): '

Hr(w) = sin(Nw/2) / (N sin(w/2)) - (3)

Fig. 7 shows the convolution of the DTFT's, which corresponds to the multiplication
of the time sequences. We see that the DTFT of the Hamming window is the sum of
three periedic sincs. The sum {by actual calculation, and by inspection) does not reach
- zero until we reach a frequency (marked b in Fig. 7) that is twice the distance to the first
zero for the same length rectangular window (marked a in Fig. 7). Beyond this, we see
that the sum is small, for the case we are plotting (A=0.23, B=0.54). Since the sum is
small in these "sidelobes,” we might well look to see if we can make a particular point in
the sidelobes take on a value of exactly zero, by adjusting A and B, maintaining
equation (2).

12 - T T T T T T T

_— 1

04

02

— __.>. *—.sﬁgacingrclN=1tl19 01310 (D) _
o | B |
| | i WA
N /\\ /Av vf\v/\v/\v[\ //\H JA\/ JAATRATATAY

A -
: -y -0.0962 (D49} .

~0.2144 (D)

-3 2 -1 0 1 2 3 4

. Fig. 8 [n Fig. 5 we saw that the raised cosine window was obtained by _
multiplying a raised cosine by a rectangular window. This multiplication inthe

- time domain of course implies convolution-in the frequency domain. Thus we

- would convolve a sinc function (in frequency) with three “spikes” corresponding to
the raised cosine. However, for the discrete Hamming window, we need to use a
“periodic sinc” or “Dirichlet” function, and this is different for different lengths.
Here it is shown for length 19 (note: 18 zeros in any one full cycle).
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Fig. 7 In the convolution in the frequency domain, we will have three terms, the
positive and negative frequencies of the raised cosine (A} and the constant (dc)
term (B). The convolution “sum” is twice as wide as the DTFT of the rectangular

window, but beyond that, the sum can be small (above) and we can look to
manipulate A and B to place a particular zero at a desired frequency.

The most logical frequency to set to zero (to begin with at least) would be the center
of the first sidelobe, a frequency of w=51/2N. Using Fig. 6 and Fig. 7, we note that the
~ contribution of the three convolved Dirichlet functions sums to:

BR+Aa+Ay — 0 | (4)'

In the case where the length of the rectangular window is sufficiently long (perhaps

_greater than 10 or 20), the values of «, B, and y closely approach those of the
amplitudes at the centers of the sidelobes of a continuous time sinc.

o = -0.2122
8 = 0.1273 (5)
y = -0.0909

In the case where we want to be exact, we can use the amplitudes at the centers of the

~sidelobes of the appropriate Dirichlet function [Fig. 6 fqr length-19, using equation-(3)]- - - - - - - -

0.2144 , - _
0.1310 | | | (6)
-0.0962 .

LI { B

B
B
Y

Equation (4), along with equation (2), are then solved for A and B. For the continuous

time sinc, we have A=0.2283 and B = 0.5434, rounding to the conventional 92% raised
cosine on an 8% DC pedestal (see Fig. 5). Forthe length 19 d[screte window, the -

results are very close:
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window. To be clear, here we have adjusted the

L e e

timing and spacing of the samples to obtain all unit circle zeros, as in Section 2, and
now we have further optimized the parameters to place the half-shift-induced zero to a
specific frequency. Some examples will follow the presentation of some programs.

4. PROGRAM AND EXAMPLES

The Matlab program included here is named ham2.m. [An earlier version, named

ham1.m was included in AN-319.]

This program designs a modified Hamming

window h of length N, with an additional input parameterr. The program first looks at
the parameter r, and if r does not exceed 1/2, it assumes that r represents the frequency
(on the interval 0 to 0.5, for a sampling frequency of 1) at which the extra zero is to be
_placed. [fris greater than 1/2, the program assumes that the extra zero is to be
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placed in the center or a sidelobe. For examplé, we often would make r=1 to indicate
that the zero is to be the center of the first sidelobe.  (Omitting the input parameter r will

default to the center of the first sidelobe. )

- Normally, we think of r greater than 1/2 as being a S|de|0be with mteger value,

| However, this is not required. Values of r between 0.5 and 1.5 will move the zero down

or up relative to the center at 1. The exact frequency is prmted out as fzero. Thus

‘'specifying the zero in terms of SIdeIobe is a matter of convenience, but does much the

* same thing as setting the frequency with rless than 1/2. One case where this sidelobe

specification is very useful is when we want to shift the zero slightly off (usually below)
center. This we will look at below, where we see that a sidelobe of 0.94 is a useful
choice when we want to minimize the energy in the first sidelobe. If we had to have
only one choice for r, we could argue that it should be 0.94. Thus h = ham2(N, 0.94) is

_ possnbly a better default than ham2(N) or ham2(N 1}, the last two belng equivalent. .
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In addition to computing the modified Hamming window, the program includes
various displays, and comparisons to the standard Hamming window. These are not
essential to the computation of course, but it is felt that one point about having a
modification is to clearly state the original case. It will be noted from the display (figure
1 of the program) that the time domain window is relatively little changed from the
standard window, except at the ends. The second display (figure 2 of the program) -

“shows differences in the DTFT's of the two windows. Note that the  modified window
cuts off faster, and that there is an overall lower sidelobe level in the vicinity of the
added zero, and of course, there is the added zero (at the frequency fzero). The final
two displays are the zero plots in the z-plane for the two windows, and we note that the
"lazy zeros" (figure 3 of the program) move to the unit circle for the modified window
(figure 4 of the program). The program ham2.m calls a program pzplot1.m, which is
also printed here. (Over various revisions, there have been dlf’ferent "pzplot“ programs

| ~ that one may encounter in Matlab. )
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Fig. 8 shows a modified hamming window corresponding to ham2(19,1) , where the
added zero is in the first sidelobe, with the window shown in 8a, the DTFTin 8b -
(fze10=0.1316), and the zero plots in 8c and 8d. Fig. 9 shows a similar set of plots for
h=ham2(19,3) where the added zero is in the third sidelobe (fzer,=0. 2368). Fig. 10
‘shows plots corresponding to ham2(19,0.25) which places a zero exactly at the
frequency 0.25, somewhat higher than the middle of the third sidelobe.

Above, when we considered placing the extra zero in a sidelobe, we ‘thought about
the center of that sidelobe (Figs. 8, 9) or at a particular frequency (Fig. 10). This.is -
logical enough, but additional thought may suggest that we might want to choose some
other performance criterion. ‘Possibly we might want to choose a position for the extra
zero that equalized the split sidelobe. A bit of trial and error shows that this occurs with -
r approximately 0.92 [try ham2(19,0.92)]. Another rational thing to try might be to
minimize the energy in the sidelobe. This is a bit more complicated to lnvestlgate but
when done, the value of r of 0.94 seems to be the result (0.95 if the length is more like -
12). A modification of ham2 that searches a range of r and sums the energy of the first
sidelobe is program ham? in the appendlx Flg 11 shows the results of the case of
ham2(19,0.94).
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5. THE EFFECT ON FILTER DESIGN - THE REAL TEST

The real test here is not so much how well the modified window performs on its own,
but how well it performs in an actual application. We have seen that our modified
windows are able to get rid of "lazy zeros" through the use of correct sampling of the
continuous-time window, and we are further able to manipulate the window parameters
(A and B) to improve sidelobe rejection. Do these improvements carry over once we

make an application?

Windowing is often used for data acquisition, and in filter design, and we will look at
the latter application here. Typically we make an initial design using inverse DTFT, and
then multiply the initial impulse response ("taps"), point-by-peint, by a Hamming {(or
other) window of the same length, to taper the taps at the ends [4]. The main goal of
this windowing is to "smoothen" the passband and stopband "ripples.” Usually it is the
reduction of stopband ripple that is of the most interest, as this corresponds to better
rejection in the stopband - more or less the filters main function. At the same time,
there is an "engineering trade-off” in that the roll-off rate in the transition band (from
passband to stopband) is more gradual, and the filter is less "sharp."

With regard to stopbands, unit-circle zeros are of particular interest because they
represent frequencies where the response is exactly zero, and because a dense
clustering of zeros should correspond to superior rejection. [n particular, we would want
to see if any "lazy zeros" are coaxed into helping out more by moving to the unit circle.
Does the mod ified window help?

The answer is clearly "yes” since we almost always get what we can argue is a better
filter when we use a modified window relative to use of the standard window. We may
not get additional unit-circle zeros in all cases. In our example filter designs, our
starting point will be a length N FIR low-pass with cutoff set to 1/8 the sampling
frequency, and inverse DTFT will be used. Fig. 12 shows our first example, length 19
(N=19), and we show the original unwindowed filter, and designs using the standard

and modified windows. The test program is hamtest.m in the appendix. /

b Bt KL Nl et

note the unwindowed response (dotted line). Thls is not a very good filter. It does have
a cutoff that might be 0.125 (1/8) but its first sidelobe (at about 0.18) is only down to
about 10%. But the contest of interest here is between the standard Hamming window
(dashed line) and the modified Hamming window, using ham?2(19,1).(solid line). Note.
that both these have a less sharp cutoff (observe for example, the rolloff between 10- 1
and 107 relative to the unwindowed case. Both windowed cases do end up below
0.003. Which of the two is better? Well, except for a small region around frequency
0.228, the modified window case is clearly as good or better than the standard window.
This is certainly because of the extra deep zeros (see region from about 0.22 to 0.26).

|:'1r1 12/3\ showe t 'I-hn frequency response (mannlfudn nTFT\ of the three filters, First
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Fig. 12(b) shows the zero plot of the original unwindowed filter. Here we see the four
reciprocal zeros typical of a passband, and 14 unit-circle zeros typical of a stopband.
With windowing (c, d), the zeros rearrange, basically pulling back from the cutoff region
(which is at a 245 degree angle with respect to the positive real axis). The difference is
that in (d), two pair of lazy zeros move to the unit circle. This accounts for the improved
rejection in the general region of 0.25. Not all the cases give us this nice exira zero.

In Fig. 13, we have a case corresponding to Fig. 12, but the length was increased to
21 (from 19). We don't get extra zeros, but from Fig. 13(a) we see, none the less, the
response in the first sidelobe is improved. We see this by comparing Fig. 13(c) and Fig.
13(d), and we see that use of the modified window [ham2(21,1)] the lazy zeros have
moved toward the unit circle, although they have not reached it.

Fig. 14 shows an additional case where we move the zero of the window from the
first sidelobe to the second. We use ham2(21,2). This results in a filter that is
surprisingly good. Note that, except for a region right around the frequency of 0.22, itis
better than the standard Hamming window case, and ends up with better than twice the
stopband rejection. It would be easy to argue that thts is a better result than Fig. 13 as

well,

One might wonder if getting a favorable result, extra stopband zeros, is not just a
matter of choosing a length and sideband lobe, but rather, we may also need to
manipulate the parameter r. - In particular, the procedure worked great for length 19 in
that we got two extra pairs of zeros, but did not work the same for length 21. In fact, if
we study a range of filter length, we find success occurs in clusters:

Extra Unit Circle Zeros No Extra Unit-Circle Zeros
N=7-11 N=12-16
N=17-19 N=20-24
N=25-27 N=28-32
N=33-35 N=36-41
N= 42 ' N=43... . ..

.'The reasons for these resulis are not explained here. It should be noted however that
in the cases where we do get extra unit-circle zeros, it is not necessanly true that we get

a great filter.

_ We might well wonder if we choose a length where we do not get good extra zeros =~
“automatically” if we can force them to occur by a better choice of 1?7 It appears not, but”
here we are at the extremes of our investigation, so our conclusions are perhaps
tentative. Here is what happens. Fig. 15 shows the case of N=21 where we did not get
automatic unit-circle zeros. True enough, if we manipulate r (which is the same as the
frequency for the zero, since r is less than 0.5) we can force the zeros onto the unit
circle. This clearly corresponds to a downward loop in the frequency response reaching
and crossing zero. The point is that the frequency response is poor in these cases,
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Fig. 15 If we attempt to force zeros onto the unit circle by manipulating the r
parameter (the frequency here), we can do this. Here we show the lazy zeros for
the case of r=0.15 (larger circles with dots in center) and as we decrease r, the
lazy zeros do move to the unitcircle (at r=0.0635) and then spread along the
circle. This clearly corresponds 10 a downward lobe of the frequency response -
dipping to and below zero. The sequence ends with the smaller circles, and
corresponds to r=0.055. Other zeros move as shown, and the ones on the left
barely move at all. The interesting point is that while we get unit-circle zeros, the
resuiting filter is quite poor, so it is quite pointless.

- being far far worse than the standard Hamming window, and not much better than the
unwindowed case. But it is always fun to look at this sort of “root.locus” result
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APPENDIX
ham2.asm Main Modified Hamming Window Program

functien h=ham?2 (n,r)
%*******‘k*****************-k*-k****-k*******************************-.k********

% function h = hamZ{n,r)
Refined Hamming Window - Shift by 1/2 Sample + Customized Zero
n = length of Hamming Window
r = window parameter
if r>0.5 the added zero is placed in the r~th sidelobe
if r<0.5 then the added zeros is at r where r is a fraction
of the sampling rate.

GP O° df OC o . oP oo

% B. Hutchins ‘Fall 1999

Fhhkdkhhhhdhbhdhddhhdhhdhdhdhddd bbb hodhkdodododowobodk ok ok odkeosb ok sk ko bk ok ko ek b ok b e b kb e b b e vk ke o

if exist('r')==
rr=r;
if xx>0.5
r=2%x~-2;
fzero=r/(2*n) + 2.5/n;
end
if rr<=0.5
fzero=rr;
r = (2*n)*{r - 2.5/n);
end : :
else r=0;
end

fzero fzero = frequency (on 0 to 1/2)

%

% for position of extra zero
% r 1s now offset relative to
% center of first sidelobe

% Compute Dirichlet frequencies and functions
a3={(3+x)*pi/(2%n);

ab=(5+r)*pi/ (2*n);

al={7+r)*pi/(2*n): .
s3=sin{n*a3)/(n*sin(a3});
sb=sin(n*ab)/ (n*sin{ab));
s7=sin(n*a’7)/ (n*sin{a?));

’

r

% Compute dc and cosine parametexs
a=-85/{s7+53-2*55);

b=1-2*%a;

dc=b-2*a;

ac=2*a;

% Compute window, symmetric, one full cosine cycle,

% .offset by 1/2 sample to put all zeros on unit circle
k=0: (n-1); .

h=detac* (L+cos {{1+2*k-n) *(pi/n))};
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% Display and comparison to standard Hamming window below
figure{l)

stem(h)

hold on

plot {(hamming (n), "--")

axis{[0 n+l -.1 1.1]%;

title('Modified=0, Oxig. Ham. = ...."}

hold off )

figure (2)-

H=fregz{h,1,10000);
H=abs (H) fabs (H(1)) ;

HO=fregz {(hamming (n},1,10000);
HO=abs (HO) /abs (HO (1)) ;
semilogy([0:.00005:.49995],H);

hold on

semilogy ([0:.00005:.499%5],H0, "—=");
title({'Modified=solid, Orig. Ham. = ...,."')
hold off )

axis([0 .5 0.000001 1.2]);

figure (3)

. [p0, z0]=pzplotl {hamming (n), 1) :
title('Original Hamming')
axis{[-1.3 1.3 -1.3 1.3]1);

figure (4}
(p,zl=pzplotl{h,1);
title{'Modified Hamming')
axis([-1.3 1.3 -1.3 1.3]);
figure (4)

ham7.m Modified ham2.m to search out minimum energy sidelobe

function h=ham7(n, x}
%******'*********-k-k********************** khkkhhdhdbhkdhhbhbhdhAbridrdTrdhidrhbddridi

% function h = ham2(n, )
% Refined Hamming Window - Shift by 1/2 Sample + Customized Zero

% n= ;e‘lgth of Ha.Hi.Hu.ng Window

% r = window parameter :

% if r>0.5 the added zero is placed in the r-th sidelobe

% if r<9.5 then the added zeros is at =z where r is a fractlon

¥ ef the sampllng rate. :

% . .

% B. Hutchins Modlflcatlon of ham2.m _ Fall 2003
%****-}r*-**************************************-k'k'Jr***************'*******‘k*****
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m=0;
for r=0.75:0.01:1.25 % look for min energy over a range about
% center of first sidelobe '
m=m-+1 '
if exist('r')==1
Yr=r;
if rxr>0.5
r=2%1-2;
f=r/(2*n) + 2.5/n;
end
if rz<0.5
r = (2*n}*(xr - 2.5/n);
end
else r=0;
end
r;:
a3=(3+r) *pi/(2*n);
ab5=(5+r)*pi/{2*n);
al={7l+xr}*pi/(2*n);
s3=sin({n*a3}/(n*sin(a3));
sb=gsin(n*ab}/ (n*sin{ab));
sl=gin{n*al)/{n*sin(al));’
a=-s55/{s7+s3~2%s5);
b=1-2%a;
dc=b-2%*a;
ac=2*a;

k=0:{n-1});

h=dc+ac* {l+cos{ (1+Z2*k-n)* (pi/n)}};
H=freqgz (h,1,10000};
H=abs {H) fabs (H({1)) ;

z=roots (h); % find the zeros
ang=angle(z); % find their angles

- % keep the positive angles
a=[1;
for k=l:n-1
if ang(k)>0
a=[a ang(k}]:
end
end

% find first sidelobe - range beetween first and thirxd zero
ang=a;j;

ang=soxt {ang};

ang=ang/ {2*pi);

kl=round (ang{1)*20000};

k2=round{ang(3)*20000};
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% add up all the enexrgy in first sidelcbe
s=0; . :
for k=kl:k2
gs=s+H(k)"2;
end
ss(m)=s;

end

% find index for smallest result
[, in]=soxrt (ss)

r=0.,74+in(1}* .01

% now compute result for best sidelobe value
h=ham2 (n, r)

hamtest.m Program to Apply Window to Test Filter

% hamtestl.m
function hamtestl (N, r)

wl=hamming (N) '
w2=hamz2 {N, r}

nfirls=firls(N-1, (0 .25 .25 1],(1 1 0 0]);

hO=hfirls
hl=hfirls.*wl
h2=hfixls. *w2

HO=abs (freqz (h0,1,5000));
Hl=abs(fregz{(hl,1,5000});
HZ=abs (freqz (h2,1,5000));

figure(5)

subplot (311} _
plot ([0:.0001:.4999], HO)
title('Orig. firls")
subplot (312}

plot ([0:.0001:.49%9], HL)
title('Orig. Hamming')
subplot (313) .

plot ({0:.0001:.4999], HZ)
“title('Modified Hammming')
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figure (6)
semilogy([0:.0001:.4999], RO, 'r:')

hold on

semilogy{[0:.0001:.4999], H1l, '--g")
semilogy{[0: . .0001:.4999], H2,'c")
axis([~-.05 0.55 0.00001 5]} - .
title('r=firls g=Hamming c=Mod Hamming')
hold off

figure(7)
[z,pl=pzplotl(h0, 1)

grid off

figure(7)

hold on

plot ([~5 5], [C 0]}

plot{[0 0], [~5 51)

hold off

title{'Original Filter')
axis([-1.3 2.5 -1.5 1.51);
figure (8)
[z,p]l=pzplotl{hl, )

grid off '

figure (8)

hold on

plot ([~5 51,[C 01)

plot {[0 0],[-5 31])

hold off

title{"0Original Hamming Filtex"')
axis([-1.3 2.5 -1.5 1.5]1);
figure (9)
[z,p]=pzplotl(h2, 1)

grid off

figure (9)

hold on

plot([-5 5],[0 0]}

plot{[0 0], [-5 5])

hold off

title("Mcdified Hamming Filtex')
axis([-1.3 2.5 =-1.5 1.5]);
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pzplot1l.m Plot Poles/Zeros in a-Plane

function {z,p)=pzplotl(b,a)
function [z,pl=pzplotl(b,a)
Plot the poles and zeros of a transfer function in z-plane
z are zeros of numerator polynomial b
p are poles of denominator polynomial a
z (plotted as o) and p (pletted as x) in the z-plane
multiple-order singularities are only indicated as single-order
B. Hutchins, EE425, Cornell Univ. Fall 1993

d° O GP S0 o0 I° oP

% find roots
z=roots (b):;
p=roocts{a);

% find max for plotting
pmax=max ([abs{real{z)); abs{real(p)); abs(imag{z)); abs{imag(p)) 1}:

sc=cell (pmax);

% begin plot

% prepare circle

n=0:500;

r=exp{j*2*pi*n/500) ;

axis{[-sc, sc, -sc, scl}:

plot(r,'g'")

grid )

“hold on

% plot real and imag, not just z itself or else the real part
% may be plotted as verticle if singularities are not complex
plot(real({z),imag(z), "o")

plot (rxeal (p), imagip), 'x")

hold off

axis('equal")
axis([-sc sc -sc s¢))
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