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PASSIVE SENSITIVITIES AND TUNING EQUATIONS

" INTRODUCTION

The notion of “classical sensitivity” has been around a very long time as a general
means of selecting among various circuit configurations, with regard to how well they
meet specifications while using imprecise components (components with “tolerances”)
[1]. Not only do these calculations provide some ideas relating to the suitability of a
particular network configuration, but they can also prowde “tuning equations” for
calculating small correcting components for “trimming up” individual units [2].

A SIMPLE VOLTAGE DIVIDER EXAMPLE

To begin, let's consider the humble voltage divider (Fig. 1).
Here the output voltage is determined from the input as: V'” V°“t B a Vin
Vout = & Vm Vin R2/(R1 + R2) (1)
or: |
= Rz /(R1+ Ry) (2) | Fig. 1 Voltage—[—)wlder

Classical sensitivity is defined as a ratio of fractional changes (a “slope”) as:

¥
S = (AYN) (AxX) | (3a)

X

where we are asking how some performance parameter y varies with changes in some
component value x. More exactly, we can look at it as saying that a certain percentage

. change in.y, (100 Ayly). is expected for a certain percentage change in x (100 Ax/x) ata . . .

certain point (the 100’s of course cancel). This is usually calculated as:

Y !
S = (xly) (dy/dx) | (3b)

X
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Applying this to o we have:

o

Sm = (Ri/o) (8a / Ry ) = -Ri(Ri+Ry) —a-1 (4a)

[

SR2 = (Rofa)) (8 / 8Rz) = Ri(Ri+Ry) =1 =0 | (4b)

These calculations are not atypical even though it is a particularly simple case. Note
that we plugged the nominal value for « into the calculation of (4a) and (4b), and that we
then wrote the result in terms of the nominal value of o.  Note that the two sensitivities
are negatives of each other in this case, and that since o must be between 0 and 1, the
sensitivities range in magnitude from 0 to 1. We might have expected the largest
sensitivity (magnitude) to be associated with the lardger of the two resistors for a
particular a, but this is not the case. The sensitivities are of the same magnitude, and
are minimal (and of magnitude 1/2) when o = 1/2.

We can understand this by noting some limiting cases. Suppose o is very small, so
that Rz is much less than Ry, Now if Ry is doubled, it is still very small compared to Ry,
and the series current is only very slightly smaller, so a doubles. This is what equation
(4b) says for small « — the sensitivity is almost up to 1, and a essentially changes by the
" same percentage that the resistor R, varies. Further, if Ry were to double, and current
would go to half its original value, and o would become half its original value, again
changing by the same percentage as the resistor Ry. Thus we understand the
sensitivities being very close to 1 in magnitude. Similar arguments hold for o close to
1. What happens when o is close to 1/2? This is covered in the example below.

Normally we would not think of a voltage divider as a filter, or even a system, but the
value of o is certainly a “performance parameter” of the divider. Note that from the

sensitivity calculations, we can obtain a tuning equation. For example, suppose we do
want o=1/2 but experimentally, we find «=0.48 (low by 4%). (This is not a hard problem
of course, so we just use it for an initial |IIustratlon ) Intmtlvely we recognize that we

would need to add a small series resistor to R; for this case. .But how much — 4% of the
nominal value of R;? No, the sensitivity of a to Rz is 1 - o which is 1 - 1/2 or just 1/2 for

this case-(see-equation 4b). Thus a series resistor--of 8% of Ry should-be added.- . - -
Let's do an actual example. Suppose R and R; are nominally 10k, but the actual

values (within an expected 5% tolerance) are R1=10.41k and R;=9.61k. This would give
us a=0.48 in reality. Note that we do not know the true values of these resistors — we

AN-361 (2)




just know the measured performance parameter is «#=0.48. According to our theory,
we need to add 8% of (the nominal value of) 10k or 800 ohms to R. If we did this, we

would get
= (9610+800) / [10410 + (9610+800)] = (52)

which is exactly what we wanted to get. In reality, we would choose a 5% resistor close
to 800 ohms, which would be a nominal (standard value) 820 ohms. Let’s suppose this
is only 790 ohms in reality.

o = (9610+790) / [10410 + (9610+790)] = 0.4998 (5b)

which is still an excellent correction of course. Thus we see the potential of combining a
- measurement of a performance parameter, with a tuning equation (sensitivity
calculation) to obtain a “trimming” component, with a performance result far better than
the tolerances of any of the components invoived.

We should perhaps do one more example with a different o. Suppose we want « =
0.25, so we choose R1=30k and R,=10k hominally. But, if R=29 7k and R;=10.3k in
the actual components, we would get «=0.2575, which is 3% high. In contrast to the
first example, here the gain is high and we need to add a series resistor to Ry. Butalso
here, we do not change by 6% (that is, we do not double the percent error as we did for
a=0.5). Instead we note from equation (4a) that the magnitude of the sensitivity is 1-« =
1-1/4 = 0.75. Thus we need to calculate the trimming resistor as 3%/0.75 = 4% of 30k
or 1200 ohms. Indeed this gives «=0.25. The reader is invited to consider 5%
variations from 1200 ohms, and indeed, to do more examples.

UNDERSTANDING THE TUNING EQUATIONS
AND THEIR APPLICATIONS IN PRACTICE

By simply rearranging equation (3a) we see that our so-called tuning procedure is
summarized by the “tuning equation”

AX = x (Ayly) [ S . (6)

where S is calculated using equation (3b). That is, we get Ax, the amount to change x,
in order to get the desired Ay. We may need to use some common'sense 1o interpret
Ax. In our examples, we have made Ax a change is resistance that is positive, and we

saw this as a series trimming resistor. If Ax is negative, we would understand that for a

resistor we would need to calculate a parallel resistor to reduce the total resistance. Or,

we might just attack a different component (R, instead of R, in our examples above)'.‘
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Another point is that when we calculate using equation (3b), we may make errors in
our math. How do we check our results? Well, we can always just go back to the
design equations and jiggle the component values slightly — “sensing” the derivative
about the nominal point. In our example, equation (2) is the design equation. If we
jiggle R4 for example, we can see how much « changes, and see if it agrees with
equation (3b). More or less, this is what we have done in our examples, just to show
how things work.

Employment of tuning equations is most useful when we have many units to be
trimmed. The reader may have recognized that by the time the math is worked out and
verified, any single circuit could probably have been trimmed by hand ~ trial and error.
We gain from our initial calculations when we measure, calculate, and trim successive
units, each one being done with excellent results on the first try.

It is also worth remembering that with a normal scatter of component tolerances, we
would expect the performance parameter to vary both high and low, likely forcing us to
choose between two different trimming strategies depending on the measured
parameter result. This we illustrated in our example where once a was low, and once it
was high. It is probably more useful to take steps to assure that all the units are wrong
in the same direction. In the case of the voltage divider, we might have chosen R1=10k
and R,=9.1k, even though we wanted ¢=0.5. In this way, we would always be adding a

series correction to Rz, moving o upward.

In most actual systems we would have in mind something like a filter that had such
performance parameters of cutoff frequency, “Q”, and gain (not just the trivial « of the
voltage divider). In these cases, the tuning equation approach may be much more
useful, as trial and error could be very tedious. Note that in these cases, we would
likely do something like choosing the nominal cutoff frequency always slightly high, so
that it could be then trimmed downward with a series resistor. However, in some cases
it is probably easier to actually install parallel components. More on actual filters

below.

SALLEN-KEY

Probably no active'fiiter is more famous than the Sallen-Key Low-Pass [3,4,5].
Accordingly we can use this to illustrate some sensitivity and tuning applications. Fig.
2a shows the usual simplified circuit wh1!e F|g 2b shows a more detalled cwcwt The

‘transfer function of Fig. 2a is:

~ KIR?C?
T(s) = = — | (72)
s? + (3-K)s/RC + 1/R*C -
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Fig. 2a Simplified Sallen-Key Fig. 2b Full Sallen-Key

From this we can obtain the “design equations”
wo = 1/RC | - (7b)
D =1Q =(3-K) ' (7¢)

where wy is the “pole radius” and the “damping” D = 1/Q relates to the angle of the
poles [6]. These calculations correspond to the “equal R, equal C” selection of the
components. That is, we intend that both the resistors R and both the capacitors C be
the same value — a very reasonable approach. Yet as wé shall see, this can mislead
us. The resistors are not the same in practice simply because any two (even nominally
marked the same) will have at least slightly different values. But, far more importantly,
they are different because they are in different places in the network. This does matter.

Accordingly, we can look at Fig. 2b. For one thing we have shown the actual op-
amp realization of the non-inverting amplifier K. In addition, the R resistors and C
capacitors are separately numbered (nominally they are still the same). The transfer

function is now:

K/R{R2C1C>
T(s}= - : : ' (8a)
§% + s [(1-K)/R2C2 + 1/R1Cy + 1/R3C4] + 1/ R1R2C1C
with corresponding design equations: \'
wo = 1/ V[RiR2C1C3] (8b)

and
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D = (1-KW [R1C1/R2C2] + V [ReCo/R1C1] +Y [R1Co/RoCr] | (8¢)
where
K= 1+Ryg/R (8d)

All we have done to get the déSign equations is to fit the actual transfer function
denominators to the generic denominator:

d(s) = s? + Dswp + We? | ©)

Now there are a couple of key points. First, when we set the resistors equal and the
capacitors equal in equations (8), we get, as we must, the resulis of equations (7).
Second, when we look at the simplified case (equations 7b and 7c) we suppose that the
pole radius (cutoff frequency) depends only on R and-C, and that the pole damping
depends only on K. But equation (8¢) shows us that the damping does depend on the
actual matching of R and C values (though more strongly on K).

A third point relates to the fact that when we try to calculate the sensitivities, we can
get fooled by the simplified case. Using equation (3b), applied to equation (7b}, we get:

o

S = (Riwy) 8 (1/RC) / 8R = REC(-C)IR2C2 = -1 (10a)
R .

and this is wrong, or at least useless. What it says is that if both the resistors R were
wrong by the exact same (relatively small) percentage, the frequency would change in
the opposite direction by the same percentage. But the resistors are not exactly the
same ~ that is the whole point. What we need is to use equation (8b):

Wi

S = (Riwo) 8 ([RR2C1Ca] ") 18R, = -112 (10b)
R1 ' ’

and this is the right answer. When only one resistor changes, the frequency only
changes by half the percentage. The same sens:tiwty calculation for wg apples to Rz,

C4, and C; of course.

Notice that the sensitivity of weto K is actually zero. This is not exactly saying that
the cutoff frequency of the low-pass does not vary with K, because as K varies, the
“characteristic” of the low-pass varies (e.g., it may peak more) and a cutoff defined in a
particular way (relative to the pole radius that does not change with K) may vary at least

slightly.
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Certainly however the damping is sensitive to K. In particular, using equation (7¢)
we have:

D

S = wDpa(3-K/K = KI/GK) A1)
K )

which may be a recipe for disaster. In partlcular in many higher-order filters that are
formed by cascading second-order sections as in Fig. 2, the highest Q (lowest D)
section may well have K uncomfortably close to 3. Even with K just 2.9, note that the
sensitivity is -29. A tiny change in K can have a major change in D. So this is
revealing, but is perhaps something we already knew: we don’t want that center term of -

the denominator to become zero or to go negative.

It could well be argued that it is not the sensitivity relative to K that we are concerned
with, but rather the sensitivity relative to Rys and R’. Looking at this issue will permit us
to try a few additional ideas. First, it is easy to show that there Is a “chain rule” that
applies to sensitivities so that, for example:

D D K .
S = 8§ S (12)
R’ K R’

and it is also easy to show that:

1o o
S =-S5 (13)
R’ R’
These relationships are familiar from differential calculus. The significance of these with
regard to the present problem is that the K of our Sallen-Key is just the 1/ of the

voltage divider studied originally [and o = R’ /(R+Ry)]. Thus using equation (4b) along
with (11), (12) and (13) we arrive at: :

D D o

S - S (—S ) = [-K/B-K)][- (K-1)/K] =[K-1]/[3-K] (14)
‘We see that the magnitude of this last sensitivity lags slightly the magnitude of the
sensitivity to K, as it should. Perhaps this is most easily seen since the 1 in equation

(8d), all of K, does not vary with R.¢#/R’, part of K. (The result of equation (14) can also
be calculated directly of course.)
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We can try this with an example. Suppose we want D=0.1 (a Q of 10, fairly high).
This means we want K=2.9. We could choose Ry=19k and R'=10k. But let’s suppose
R’ is high by 0.1% (just 10 ohms!) and we actually have 10.01k. Now K=2.8981 (slightly
low) so D=0.1019, which is 1.9% high‘. Thus we have a fairly sensitive result, a change
in R’ resuits in 19 times that change in D, by calculation from the design equations.
What does the tuning equation (14) say? Plugging 2.9 into equation (14) we do get
SPr=19, in agreement with the example.

THE DELIYANNIS BANDPASS

Our final example here is a popular i
bandpass filter known as the "Deliyannis” o
bandpass which has proven useful in
single units [7,8] as well as in filter banks [9].  Vin R
In particular, when used in a bank of dozens "
of filters, we really do need some sort of C
tuning equation and trim procedure. Trial

and error in such a case would clearly be
too tedious.

The Deliyannis bandpass is shown in ' Fig. 3.
Fig. 3. It is basically a multiple-feedback-
infinite-gain bandpass with positive feedback.
The transfer function is:

-s/[{1-)RC]
T(s) = — - (15)
[2(1 -a) - aBls
s+ . -+ 1/BR?C?
(1- oc)BRC '

rrom this we easily derive the design equations:

we? = 1/BR?*C? - (18)
Q = (1-) VB /[ 2 - a(B+2)] e (4T)
g=B/[2- a(B+2)] | (18)

where g is the passband gain (gain at center frequency).

AN-361 (8)




One of the design goals of constructing a filter bank is usually to have the gains of all
filters the same, and this is probably more important than getting all the Q's the same.
Further, the Q is generally hard to measure, while the gain is easily measured.
Accordingly it is often the case that we do frimming based on the gain. Notice that Q
and g have a similar dependence on « [(1-a) is close to 1], so we expect that trimming g
will also move Q in the right direction as well. Typically we would build the filter with R,
intentionally set one drawer low (the 5% value below the closest 5% value). Then we
measure the gain, which should be low. Based on the additional gain needed, we
calculate and install a series correction resistor.

Thus what we need is the sensitivity of g to Rz. While our first "trivial" example was
just a voltage divider, we did manage to use the voltage divider result in the Sallen-Key
filter, and we will use it again here. We start out fo find the sensitivity of gfoa  Using

equation (18)
g
S = (afg) 8g foa = a(B+2) / [2 - a(B+2)] (19a)
(08

Equations (.4b) and (12) then lead to:

g g «
S = 8 S = oB2)(1-0)/[2-aB+2)] (19Db)
Rz a Rz

where ais Ro/(Ri+Rz). Thus, if we knew that we needed a certain delta g to be added,
we could calculate the additional series resistor AR; needed as:

g .
AR, =R; (Aglg) 1 S (20)
Ra

Note that the nominal values of g and of R, are used to calculate this correction. Note
also that if we needed to trim the center frequency, we would do that first, since this will
almost certainly involve changing R or BR, and hence B. But then B is fixed as we
adjust the gain.

Ca!culating sensitivities with paﬁia'l derivatives can be tedious [1], and we haveto

keep in mind what we are trying to accomplish. Thus we may at times become tired
and arrive at an answer that requires some verification. This is not hard to do. For the
example above, we calculate a first value of g using equation (18), with & = Ro/(R1+Ry)
of course. Then we change Ry slightly. How slightly? Well, as little as a tenth of a
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percent, and possibly as little as one part per million, or less! You then calculate a
second value of g for the new value of Rz, You now have g, Ry, Ag, and ARy, and can
calculate the sensitivity at that point. Does it agree with the calculation using partial
derivatives? It should. A typical program (in Matlab) is appended to this note.
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APPENDIX

The program below was used to test the.validity of ecjuation (19) The ongmal fést bo.int"
is a 300 Hz bandpass with Q of 100, obtained as: deli(10600, 005E-6,100,43000,817)
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function deli(R,C,B,R1,R2)

% Nominal Design
a=R2/(R1+R2)
fO=1/(2*pi*sqrt(B)*R*C)
Q=((1-a)*sqri(B)) / ( 2*(1-a)-a*B )
g=B/( 2*(1-a) - a"B)

% "Jiggle" R2
R21=R2*.9999999

a1=R21/(R1+R21)
£01=1/(2*pi*sqrt(B)*R*C)
Q1=((1-at1)*sqrt(B)) / ( 2*(1-a1)-a1*B )
g1=B/( 2*(1-at) - a1*B)

% Sensitivity based on Example
SGR2E=( (g-g1)/g )/ (R2-R21)/R2)

% Sensitivity Based on Calculation
SGR2C=(a*(1-a)*(B+2)) / (2 - a*(B+2))
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