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FLAT AND NOT-SO-FLAT SPECTRA

It is conventional wisdom, even among persons with little engineering training, that
"white noise has a flat spectrum." Here we will look at some aspects of this idea. Is the
spectrum always flat? What would we need to do to demonstrate a flat spectrum that is
convincing? What sort of averaging might be necessary to show this?

It is first of all clear that if we take a random signal, it is unlikely that its spectrum will
be flat. This is because when we choose any one example of an arbitrary random
signal, there is a good chance that it will have some patterns. We might be so unlucky,
for example, as to get, by chance, something very much like a single cycle of a sine
wave, and this would of course have a spike-like spectrum, not a flat one.

In Fig. 1, we show an example of the spectrum
of a 100-point random signal. This signal was
generated in Matlab™ using the rand function.
The distribution is uniform from -1 to +1, and
we use the magnitude of the lower half of the FFT
for our spectral calculations. The result is the
solid line, which is certainly not flat. Would all
such random signals have exactly this spectrum?
That this is not true is also seen in Fig. 1 where
the dotted and dashed examples represent
additional examples with different random signals.
All these have a crude tendency to hover around
some value like 5. Individual points range from
near zero to perhaps 12 or so.

It is evident that the tendency to accidentally
hit particular patterns (like the sine wave
suggested above) would be greatest for short
length. For example, any length-two random
signal would include a dc term and a first harmonic.
Would we expect to get a flatter overall spectrum
if the signal were much longer? Perhaps. Yet
Fig. 2 shows the spectrum of a length 10000
random signal. Here we see a strong tendency
for some flatness centered about 50 perhaps, but
the variations are once again extreme, with some
samples being near zero, and some about 170.
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10000 Point Spectrum Averaged Length 100

Taking a (visual) clue from Fig. 1, we suppose that it might be the case that we do not
need to take longer length sequences, but rather, average the spectra of multiple,
shorter sequences. Figure 3 shows the average of 1000 spectra of length 100
sequences. The tendency toward a flat value of about 5 is fairly clear.

Another sort of averaging approach would be to
average or smoothen the spectrum of a single
example. This we show in Fig. 4 where the spectrum
of Fig. 2 has been averaged over 100 consecutive
frequency points. In practice, this was done by
convolving the magnitude spectrum with a length
100 vector with elements 0.01, and removing the
end "transients." Again we see a tendency toward
a convincing flat spectrum, hovering around 50. We
thus see that averaging is effective. This is more or
less what we expect to find when discussing the
statistics of a random signal. We expect the statistics
to be true when we look at enough examples.

Fig. 4 k

10000 Point Time Signal Averaged length 10Any notion that we might do the averaging in the time
domain can be set aside by the example of Fig. 5.
Here the length 10000 time sequence is averaged by
A length 10 convolution as was done for Fig. 4. The
resulting spectrum is not flat. In fact, it clearly reflects
the shape of the length 10 "moving average" filter.
Thus we see two thing of interest. First, the spectrum
at the output of a filter which has white noise at the
input gives us at least some notion of the frequency _
response of the filter. Second, the filtering in the time q"
domain "colors" the noise.

Now that we know that white noise is only flat on average, another approach to a flat
spectrum might to simply invent a flat spectrum and invert it to a time signal. This is
easy enough. We choose an FFT consisting of all ones. Inverting this gives us, of
course, an impulse at n=0, and nothing else. The connection between an impulse and a
random signal is of course, that the autocorrelation of a random signal tends toward a
pulse. Further, it is interesting to think of the pulse as a sum of sinusoidal waveforms.
In general, an inverse FFT of all ones could be written as a sum of cosines (using the
Euler relations). When this sum is evaluated at the integers, we find all the cosines
Cancel, except for n=0 where they sum to 1.

We can think of another signal that has a flat spectrum. Rectangular frequency
domain descriptions are characteristic of sine functions. Here we need a spectrum that
is flat, so the "rectangle" is always "high." This tells us that our time-domain sine needs
to be infinitely sharp, so once again, our impulse returns as a solution.
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