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EXAMPLE PERFECT RECONSTRUCTION FILTERS

BASIC IDEAS

_ The design of perfect reconstruction filters (PRF) is well-studied {1-3] but is perhaps one of

these areas where examples serve us extremely well relative to theory and analysis. We saw
this [4] in a simple (the simplest) perfect-reconstruction case where the filters were sum and
difference types - very crude low-pass and high-pass filters. In this case, we saw that it
seemed very unlikely that the filters, based on a frequency-domain point of view, would work.
On the other hand, in the time-domain view, the sum and difference devices made it '
abundantly clear that the perfect reconstruction worked. - Accordingly, we were dissuaded of
the notion that the filters had to be ideal (or even a fair approximation to ideal), based on this
actual example. By using a somewhat more complicated example, we can go through the
correct design procedure, and then vary some of the requirements to see which of them cause
the reconstruction to fail. '

The example we will give first here will actually be a four-tap filter, and we will be using an
approach known as Smith-Barnwell in the literature and on the internet [5]. We have a fair
amount of leeway as to where we can start the design (starting with a low-pass "prototype”
usually). In fact, almost any standard low-pass linear-phase FIR design method can be tried,
or simple low-pass ideas such as averaging, interpolation, or sinc-like impulse responses can
be developed. Our first example is based on the equiripple method: Matlab's remez.

There are two necessary conditions to get perfect reconstruction prototypes. (There are
additional considerations, of course, if we want useful PRF's.) The first condition is that the
prototype should be "half-band." That is, the cutoff should be 1/4 of the sampling frequency.
(Since signals only up.to 1/2 the sampling frequency are allowed, 1/4 is half the available
band.) This is equivalent to saying that all even taps of the prototype, except for the zero tap,
must be zero. This is entirely equivalent to : period '
thinking about the Fourier series of a square wave ’
as being composed of odd harmonics plus dc
(See Fig. A). (The Discrete-time Fourier Transform Fourler Series — Square wave in Time
which determines the frequency response of a
“discrete-time filter is a "dual" of the Fourier series.)
The second condition is that the frequency response
(non-causal) should be non-negative so that it can — :
be considered a squared magnitude function (a 0 g4 12 s
magnitude must be non-negative). : - DTFT Half-Band Filter

Fig. A DTFT and Fourier Series
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The prototype linear-phase filter must have a length that is one less than twice the length of
the desired pérfect reconstruction filters. This is because we want to "factor” the prototype
into two shorter filters. Here, for length 4 filters, the prototype should be length 7. Two
length- 4 filters, convolved, are Iength 7. Alength-7 filter (6 zeros) is divided into two filters of
3 zeros each.

A PRF BASED ON REMEZ

Already overdue for an example, let's start with a remez based design as -folk-)ws:
h = remez(6,2*[0 0.225 0.275 0.5],[1 1 0 0])
=[-01852 0 03195 04997 03195 0 -0.1852] Q)]

- Here we have made the response have a cutoff centered about 0.25. The impulse response
and the corresponding frequency response are shown in Fig. 1a. Note that the impulse
response shown here from -3 to +3 is zero for even integer positions, except for 0. (Thatis - it
is zero at +2 and -2.) Thus we meet the half-band criterion. What is not yet true is that the
frequency response is non-negative. In fact, it is the equiripple (remez) filter's “claim-to-fame”
that a stopband ripples about zero, hence it must go negative. So how do we make it non-

hegative? We need to add some constant.

The impulse response of equation (1) does not give the specific time indices of the seven
samples. In computing the frequency response, we need to choose something. Our choice
just determines the overall delay, and does not affect the magnitude response. If we use
Matlab’s freqz, the sequence h is assumed to be causal, and the symmetry of h about sample
4 means we have a linear phase. In this case, something like H=freqz(h,1,5000) gives us
5000 samples of the frequency response, which are generaily complex. However, itis
generally no problem to determining the constant we need to add to the frequency response
based on abs(H). We simply search for the maximum magnitude in the stopband and this
is the amount we add to the center tap of h.

It may be useful at this point to review how the frequency response is computed without
Matlab. We simply compute the DTFT as: :

H(f) = -0.1852 + 0.3195e7 + 0.4997¢7® + 0.3195¢ " .0,1852¢ 12"
= @[ 04997 + 2(0.3195)cos(2nf) + 2(-0.1852)cos(6nf) ] (2)
The term in [ ]is areal frequency response (note similarity to Fourier senes)

A(f) = [ 04997 + 2(0.3195)cos(2xnf) + 2( 0.1852)cos(6xf) ] . (3)
with a delay (linear phase) of 3 units. Accordingly, A(f) is the same a_s' |H{)| in Fig. 1a except
that the portion that goes negative (dashed line) replaces the positive portion. Generally we
may not need A(f) since we infer the sign changes from the abrupt changes of magnitude at -

the zeros. Another way is to remove the linear phase from freqz (see Appendix).
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Having now determined how far negative A(f) goes (call this amount d), it is very clear how
to stop it from going negative — you simply add d to the center tap value [see equation (3)]. It
could be argued that you could add any number greater than d, and this is true. In general,
we don’t want to do this because the filters becomes less frequency selective (imagine adding
100 to Fig. 1a-and still calling the result low-pass). On the other hand, perhaps adding a very
tiny amount extra won'’t hurt, and may help avoid some computational peculiarities. Let’s
assume we have made the response non-negative, and have reached the situation of Fig. 1b.
We now have a half-band prototype linear phase that could be a square magnitude function.
It is more or less “mechanical” from here.

The next task is to “factor” the modified (if necessary) length-7 h into two parts, a minimum
phase part and a maximum phase part. This factorization is conveniently done by finding the
roots of h, which occur in reciprocal pairs because h'is linear phase (even symmetric). There
are 6 roots for a length-7 h, and we divide these roots into two sets (one of each reciprocal
pair) and keep one set to form the low-pass filter, h0, of our perfect reconstruction pair.
Typically, the minimum phase set (those within the unit circle, and one of each pair that may
be on the unit circle) is chosen, although this is not required (Fig. B).

The roots of h are at: N 1.5 ——
discard ‘
-0.6276 - 0.7785j 05
-0.6276 + 0.7785j (4) '
-0.6277 - 0.7785j ol
-0.6277 + 0.7785j
2.0131 05t
and the minimum phase choice are the roots S T
discard : ;
0.4967 ' -1.6 , , ‘ : :
' -1
-0.6276 -0.7785,  (5) : 0 ! 2
-0.6276 + 0.7785j

These three roots are combined (Matlab’s poly for example) to obtain ho:
hO = 1.0000 0.7585 0.3765 -0.4967 (6}
As with any polynomial obtained from the roots, an arbitrary multiplicative factor is possible, so

it is convenient here to adjust this impulse response for unit response at dc (divide by the sum
of the hg terms). .

hO= 06104 04630 02298 -0.3032 (7a)
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Fig. C shows the structure of the full PRF in terms of the four component filters, the low-
pass analysis filter Ho, the high-pass analysis filter Hy, and the corresponding synthesis filteis
Fo (low-pass) and F4 (high-pass). The symbol S2 represents sampling by 2, and is equivalent
to a downsampler and an upsampler in series. At the output of S2, even order samples are
preserved, but odd numbered samples are replaced with zeros (that is, their positions remain

as they were, but the samples are given value 0).

Fig. D shows the same structure in the context of this actual length-4 case. In particular,

we indicate how to form the impulse response f;, hs, and f; from hy. Accordingly:

- Out

h1= -03032 -0.2298 04630 -0.6104 -
f0 = 03032 02298 04630 06104
f1 = -06104 04630 -0.2298 -0.3032
HO S2} ~FO
In — '
*-———
H1 S2 F1
“Fig.C L
- time reverse
In .
° 7' b 2" 2 S2 z"
o =] ho o o
20 & Bl 8
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)
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8 5 8 3
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Fig. D
time reverse ]
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Fig. 1 Prototype equiripple (a) is made non-hegative (b), is factored as in (c) and (d), -
and results in power symmetry (e) and time-domain PRF verification.
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'Having already discussed Fig. 1a and Fig. 1b, we are now ready to discuss the remainder
of Fig. 1, and quite promptly, the remainder of the figures. In order to keep the figures
uncluttered, the axes are not labeled, but all time-domain plots are shown as “lollypops”
(Matlab’s stem) with time indexes indicated, and all frequency response plots are shown as
continuous plots, with frequencies on 0 to 0.5 (half the sampling frequency). The same
conventions and plot placement applies to all of Figures 1-6. ‘

Fig. 1c shows the low-pass analysis filter, ho, while Fig. 1d shows the high-pass analysis
filter, hy. Note that these are certainly not great filters for their types. The corresponding
synthesis filters have the same frequency responses, and are not shown. One “proof” that
the design is correct is Fig. 1e, which shows the “power symmetry.” To get this, we square
the frequency responses from Fig. 1c and Fig. 1d (shown solid in Fig. 1e) and add them
(dashed line). We see that the result is a constant. Probably the most convincing proof that
the design is correct is afforded by showing the results of passing a specific test sequence
[6 -2 7 8] through the system. We see that it is reproduced, delayed by 3. The exact way in
which this is done (and normalized) is indicated in the Matlab program that generated these
plots (see Appendix).

MORE REMEZ EXAMPLES — FAILURES

Having specified the conditions and procedures, and the indications of success, we have
found that a remez approach works for PRF. We should also be able to show that if we
violate the conditions, the PRF attempt will fail. Specifically, Fig. 2 shows the corresponding
results for the case where we violate the half-band condition (the cutoff is set at 0.23 rather
than at 0.25). Here we immediately see a problem in that the original h is not zero at -2 and at
+2. Also, the filters are not power symmetric (Fig. 2e), and we do not achieve perfect
reconstruction (Fig. 2f). .

The other failure is shown in Fig. 3, where the prototype frequency response is allowed fo
go negative. This was done by calculating the amount the center tap must be increased, but
only using 90% of this value. Here the failure is again apparent in the lack of power
symmetry, and in the failure of time-domain reconstruction (Fig. 3f). It is worth noting that in
general this failure comes about as a result of relatively minor changes in the design
parameters. In particular, the analysis filters are not all that much different for the three cases
of Fig. 1 through Fig. 3.

A PRF BASED ON INTFILT — ON TO WAVELETS

We happened to choose remez as a method of prototype design. This is not required, and
in fact, a polynomial interpolation method may well be nicer overall.  Fig. 4 shows the case
where we choose h as:

h = intfilt{2,3, lagrange’)
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Fig. 4 This PRF design using a polynomial interpolation filter (cubic) is successful and -

is quite neat looking.
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This is a length 7 filter, like the remez case. The function intfiff (‘lagrange’) gives the cubic
- interpolation filter for interpolation by 2 [6]. The suitability of this to the PRF problem is clear
from its more-or-less automatically giving a correct prototype, and in the smooth results,
Because an interpolation (by 2) fiiter is expected to return the original samples with no
contribution except that of the original samples, the impulse response must be non-zero (one
is nice) at n=0, and 0 at all even integers — exactly what we need. When we look at the
frequency response, we see that it is already non-negative and needs no correction (Fig. 4a
and Fig. 4b are the same). We see ripple-less results for the frequency responses of the
filters, the power symmetry is agreeably obtained, and reconstruction is perfect. So this is a
nice result, and it can further be seen that this case relates to familiar wavelets. Specifically
the Daubechies wavelets and scaling functions (D4) can be obtained from hg and h,. These
come from repeated upsampling of the impulse responses and convolving with the originals.
Fig. E shows some results, and the program is given in the appendix.

3
- x1g°
T Y 2

%10

\\\\\

8
L)

1 L L L - o : 1 t L 5 ot - .
500 800 0 - 800 . 90 [ 100 200 300 400 500 800 700 8(‘)0 Bﬂd

Fig. E Daubechies Scaling Function (left) and Wavelet (right)

WHY NOT LONGER FILTERS?

While we have restricted our examples so far to fength 4 PRF’s, we can easily modify the
programs for longer (even) lengths. Fig. 5 shows a case where we start with a length 23
remez prototype, find the 22 zeros, factor to 11 zeros, and achieve length 12 PRF’s, all with
good results. In fact, for the first time, we start to see filters that begin to look like respectable

half band filters. The original filter here came from:

" h=remez(22,2[0 0215 0.285 0.5},[1 1 0 O])

and an interpolation filter:

h=intfilt(2,11,'lagrange’)
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Fig. 6 A “strange” but “legal” beginning results in a successful PRF, but not one that is
fikely to be very useful. '
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would be another example. In this case, we are fitﬁng an eleventh order polynomial to given
points to do a 2:1 interpolation. _

More or less just to show that it can be attempted, we will just make up a simple example
prototype:

h=[101010101011-10101010101]

for our length 23 starting pomt This result does not resemble our more reasonable choices.
Note from Fig. 6a that the response goes sharply negative at frequency 1/2, and that we must
add on a very large amount (11) to the center term to get it non-negative. As aresult, the
analysis low-pass and high pass filters do not differ by much at all, except at 0 and at 1/2, and
are very poor examples of their types. Nonetheless, we have not violated the conditions, and
we see that power symmetry and time-domain reconstruction are exactly achieved. We get a
PRF — but probably one we don’t have any use for.

From this example we also get an idea why it is not a good idea fo just add a very large
amount (much more than necessary) to the center tap to assure the response is non-negative.

In such a case, we expect the two filters to be very similar, and we have no prospect of being
able to treat the intermediate signals in a different manner.

REFERENCES

[1] N.L. Fliege, Multirate Digital Signal Processing, Wiley (1994)

~[2] M. Vetterii & J. Kovacevic, Wavelets and S-ub_ba"nd‘ Coding, Prentice-Hall (1995)

(3] PP. Vaidyanathan, Multirate Systems and FilterBanks, Prentice-Halll (1993)

[4] B. Hutchins, “A Simple View of a Perfect Reconstruction Filter,” Electronotes
Application Note AN-347, April 1998

[5] M.J.T. Smith & T.P. Barnwell, “Exact Reconstruction Techniques for Tree-Structured
Subband Coders,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol.
ASSP-34, No. 3, June 19886, pp 434-441

[6] G. Oetken, T.W. Parks, & HW. Schussler, “New Results in the Design of Digital
Interpolators,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. ASSP-
23, No. 3, June 1975, pp 301-309. B. Hutchlns “Time Domain Filter Design
Methods lnterpolator Based Filter Design,” Electronotes Vol. 20, No. 198, June
2001, pp 44-50

AN-358 (13)



APPENDIX MATLAB PROGRAMS

SMITH BARNWELL — LENGTH-4 REMEZ — TYPICAL OF ALL PROGRAMS

% sbdex1.m

h=remez(6,2"[0 0.225 0.275 5],[1 1 0 O]

% h=intfilt(2,3,'lagrange’)
h=h/max(abs(h)); '
figure(1)

subplot(211)
stem([0:6],h)

hold on

plot([-1 71,[0 0])

hold off
“axis([-17 -5 1.7])

titte('"Prototype Linear Phase Imp. Resp.")

subplot(212)
H=freqz(h,1,5000);
HH=real(ncfreqz(h,1,5000});
HH=HH/max(HH);
plot([0:.0001:.4999],HH,'--")
hold on

plot([0 .5],[0 O)

plot([C O], [-0.3 1.6])
plot([0:.0001: 4999],abs(HH))
axis([-0.02 .62 -0.3 1.4])

title('Prototype Linear Phase Freq. Resp.')

hold off

% Add to center tap if necessary
- d=0;

if min{HH)<-.000001 _
d=max(abs{H(3000:5000)));
end

d

h1=h; :

h1(4)=h1(4)+d;

figure(2)

subplot(211)

stem([0:6],h1)

hold on

plot([-1 7]1,[0 0])

hold off

axis([-17-51.7])

title('Modified (if necessary) Imp. Resp.")
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subplot(212)
H1=freqz(h1,1,5000);
H1=abs(H1)/max(H1);
plot(I0 3][00]) -

hold on

plot([0 0, [-0.3 1.6])
plot([0:.0001:.4999],abs(H1))
axis([-0.02 52 -0.3 1.4))
title('Modified (if necessary) Freq. Resp )
hold off :

% Now Factor
z1=roots(h1)
z1=sort(z1)

z1in=z1(1:3)

% analysis LP
hO=poly(z1in);
hO=real(h0)

"h0=h0/sum(h0)
% analysis HP

h1=[1 -1 1 -11.*h0(4:-1:1)
% synthesis LP
f0=h0(4:-1:1)

% synthesis HP

- f1=h1(4:-1:1)

figure(3)

subplot(211)

stem([0:3],h0})

hold on

plot([-1 41,[0 O]}

hold off

axis([-1 4 -0.8 1.2));
title('Low Pass Imp. Resp.").
subplot(212)
plot([0:.001:.499], abs(freqz(h0,1,500)))
hold on-

plot([-.05 .555],[0 0])-

plot([0 0],[-.1 1.2))

hold off

axis([-.02 .52 -2 1.4))
titte('Low Pass Freq. Resp.")




figure(4)

subplot(211)

stem([0:3], h‘i)

hold on

plot([-1 41,0 O])

hold off

axis{[-1 4 -0.8 1.2]);
title('High Pass Imp. Resp.’)
subplot(212)
plot([0:.001:.499],abs(fregz(h1,1,500)));
hold on _

plot([-.05 .555],[0 0]}

plot([0 01,[-1 1.2}

hold off

axis([-.02 52 -2 1.4])
titte{'High Pass Freq. Resp."}

% Power Symmetry

figure(5)

HLOWS= (abs(freqz(hO 1,500))).42;
HHIS=(abs(freqz(h1,1,500)))./2;
plot([0:.001:.499}, HLOWS)

hold on

plot([0:.001:.499],HHIS)
plot([0:.001:. 499, (HLOWS+HHIS),'--")
plot([-0.05 0.55],[0 0])

plot([0 0],[-.1 1.2])

hold off

axis([-0.05 0.55 -0.1 1.7])
title('Power Symmetry')

% Time Domain Test

x—[OOOO000005-2780000000000]

wlow=conv(x,h0);
whi=conv(x,h1);

s—[10101010101010101010101010]

viow=s.*wlow;
vhi=s.*whi;
ylow=conv(vlow,f0);
-yhi=conv(vhi,f1);
z={ylow+yhi};
z=5"2/z(13);
figure(6)

- subplot(211)
stem(x)

“axis([1 23 -4 10])

title("Input Test Sequence')
subplot(212)

stem(z)

title('Output Sequence")

-axis([1 23 -4 10])
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NON-CAUSAL FREQZ

function H=ncfreqz(b,a,N)

% H=ncfreqz(b,a,N)

% This function does a non-causal version of freqz.
% It should be used principally for FIR filters.

% In particular, even symmetric sequences will have
%  a purely real result while odd symmetric

%  sequences will have a purely imaginary result.
% B. Hutchins _ .
L=length{b);

omega=0:pi/N:(N-1)*pi/N; -

H=freqz(b,a,N);

H=H.*exp(j*{((L-1)/2)*omega).";

DISPLAY WAVELET

% ffffm Show Wavelets

ff=f0
fit=[l;

for k=1:length(ff)
fff(2*k-1)=ff(k);

end

fff=[fff 0]

ff=fff

ff=conv(ff,f0)

[iterate 6 lines above six more times]

ff=flipir(ff);
figure(7)

plot(ff)

ff=f1
fi={];

for k=1:length(ff)
fff(2*k-1)=ff(k);

end

frf=[fff 0]

fr=fff

ff=conv(ff,f0)

[iterate 6 lines above six more times]

ff=fliplr(ff);
figure(8)

plot(ff) _
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