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SPECTRAL RECOVERY FOR A CLASS OF
NON-UNIFORM ("BUNCHED") SAMPLING

1. INTRODUCTION:

Previously [1,2] we have remarked on the fact that while "standard” sampling with
uniform spagcing of the samples in time is common (and usually perfectly convenient),
non-uniform sampling is often workable when the situation presents itself. In such a
case, as long as the average sampling rate is at least twice the bandwidth of the
signal being sampled, we can still recover the original signal completely, without error.

Specifically, here we will look at cases where possible sample points are uniformly
spaced, but where not all these points are occupied by non-zero samples. In addition,
there is a specific pattern to the non-uniform sampling, which we shall describe in
terms of a "sampling cell" or SAMCELL. For example, if we were keeping one
sample, skipping one, taking another, and then skipping three, we would have the
SAMCELL represented as s=[1 01 00 0]. I[tis to be understood that the first number
in the brackets of the SAMCELL corresponds to time index 0, and that the cell repeats
periodically to form the actual sampling function. in this notation, reference [1] dealt

with s=[0 1 1 1] and reference [2] with s=[1 1 0 0O].

What we are looking at is the case where the bandwidth of the signal to be
sampled is significantly less than half the rate of the uniformly spaced points. We find
that because of this defacto smaller bandwidth, we can live with a proportional loss of
samples. For example, for s=[1 1 1 0 0], a bandwidth of (0.5)(3/5)=0.3 can be
supported. This reminds us of "bandpass sampling” in the uniform spacing case, and
indeed, the spectral support on the frequency range 0 to 1/2 need not be continuous
starting at zero (i.e., low-pass). For example, for s=[1 1 1 0 0] the non-zero bandwidth
can be 0.3, and we might have this as one segment from 0 to 0.2 and another
segment from 0.3 to 0.4. In such a case, it is convenient to denote this speciral
support which we can call a SPECCELL as W=[1 1 0 1 0], dividing the spectrum into
five segments (the same number as the length of the SAMCELL), where a 1 indicates
that the segment is occupied and a 0 that it is empty. In fact, W, along with s, will be
the input parameters to our procedures and programs.

It will be noted that recovery in the case of "bunched" samples is generally more
difficuit than in the case of uniform sampling, perhaps requiring resources augmented
by something like an order of magnitude. Nonetheless, in the same sense that
engineers contend that we recover signals from uniform sampling "completely,” we
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can recover from non-uniform sampling "completely.” Both cases may suggest the
need for ideal devices (such as ideal filters) which need to be approximated in
practice. As such, both the uniform and non-uniform cases may be approximations in
some practical sense. But the methods here for non-uniform sampling are not
(further) approximated as a consequence of the non-uniformity of sampling times.
Mathematically, ideally, they are every bit as good as uniform sampling.

2. AN EXAMPLE WHERE ONE SAMPLE IN THREE IS LOST

2a. Uniform Sampling - Setting Up the Problem

If we suppose that we have a set of samples that have been obtained in
compliance with our simplest understanding of the (uniform) sampling theorem, it is
fair and conservative to stipulate that the bandwidth of the signal that was sampled
was half the sampling rate. We will take the sampling rate to be a normalized value
of 1, and thus we expect a bandwidth (denoted w) of 1/2. Even in theory, the
mathematics says that we can only approach this value of 1/2, arbitrarily closely.
(And, in actual practice, values like 0.4 or 0.45 might be expected.) However, when
we make the assumption of an arbitrary closeness to 1/2, any loss of samples (loss of
information) will make exact recovery of the signal impossible.

In this note, we will be dealing with signals that are (non-uniformly) sampled, and
that have bandwidths that do not approach w=1/2, but rather which approach,
arbitrarily closely, some smalier fraction such as w=1/3 or w=3/8. In addition to stating
here this idea of approaching w, we will draw spectra (Discrete Time Fourier
Transforms - DTFT's) as triangles or other shapes that seem to reach zero at w. Fig.
1 shows the spectrum of a signal that has a bandwidth of w=1/3. This signal will be
supported by an average sampling rate of 2/3. Accordingly, we can anticipate a
SAMCELL of tength 3 for this example, in which case the SPECCELL is W=[1 1 0}, in

our notation.
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Fig. 1 An example spectrum (DTFT) of a signal that is bandiimited to w=1/3, or
W=[1 1 0]. Here we assume that the spectrum is purely real.
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We know from Fig. 1 that it is possible to recover the continuous-time signal that
corresponds to samples taken at a rate f;=1. In practice, any suitable continuous-time
filter that is sufficiently flat for frequencies from 0 to 1/3, and which gets close enough
to zero by frequency 2/3, will do (suggested by dashed line of Fig. 1). If we had been
a bit more stingy with sampling rate, we might well have noted that the same signal
could have been sampled at a rate of 2/3 instead of 1 (Fig. 2) in which case, the
triangular repetitions of the spectrum would just touch. This is still just the extreme
case of rather ordinary sampling, and we would need an ideal low-pass filter for
perfect recovery. This does illustrate that a sampling rate of 2/3 is sufficient for a
bandwidth of 1/3, at least for uniform sampling.
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Fig. 2 A bandwidth of 1/3 sampled at 2/3 is recoverable if we had
an ideal low-pass filter.

2b. Now Take 2 of 3

The new problem we intend to consider here is different in that it is the average
sampling rate that is 2/3. That is, the sampling interval corresponds to a sampling rate
of 1, but every third sample is somehow skipped and its position is represented by a
zero vaiue (Fig. 3). This, in our SAMCELL notation is s=[0 1 1]. It may also be
thought of as a "resampling” problem: some of the samples from the full set
-corresponding to a rate of 1 are removed, leaving a smaller set with only 2/3 of the
original numbers. These ideas relate fo situations that are sometimes called "non-

uniform," "bunched,” or "gated” sampling.

( s=[011)
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Fig. 3 Sampling 2 of 3. SAMCELL s=[0 1 1]
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The problem is most naturally approached by considering it as the superposition of
uniform sampling problems which we do understand quite well. For example, Fig. 3
can be considered to be the sum of two sampling situations where samples are taken
at a spacing of 3 (a sampling rate of 1/3). Thus we have two sub-sequences:
samples ... -2, 1,4, ..., and samples ..., -1, 2, 5, ..... . We note immediately that
neither of these subsequences, by itself, is sufficient for a bandwidth of w=1/3 (w=1/6
would be the maximum). However, it is clear that both subsequences, taken
together, represent twice the information contained in either subsequence taken alone

- s0 perhaps we will have some chance.

In fact, it is convenient in this case to view the sampling of Fig. 3 as a different
superposition; not as the sum of two subsequences sampled at 1/3, but rather as the
difference between two sequences, one sampled at 1, and the other sampled at 1/3.
Thus we {ook at Fig. 3 as the case where all samples are kept minus the case where
samples ..., -3, 0, 3, 6, ... are kept. This will have the advantage that spectra will
remain real and we can more easily sketch the results. But this simplification is not

essential as we shall see.
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Fig. 4 The spectrum of all samples (a) minus the spectrum of every third
sample (b) results in (d), where (c) is an intermediate step in the superposition.
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Fig. 4 shows the original spectrum (a), which has a bandwidth w=1/3, with shifted
and scaled versions of itself as seen in (b) superimposed to give the spectrum of the
sampled signal (d). While (a) contains all samples, (b) shows the case where only
every third sample is taken: the specirum is scaled to 1/3 its original height, and
spectral replicas are added, centered at 1/3 and at 2/3. (This is ordinary re-sampling.)
At this point, it is not clear that the original spectrum, and thus, the original signal (that
is, the missing samples at ... , -3, 0, 3, 6, ... , and even the continuous-time signal) can
be recovered. Clearly a low-pass filter, ideal or not, will not works.

Thus we proceed to write down the equations that describe how the superposition
spectrum (Fig. 4d) comes about. Here we use the notation A, B,-and C for the
segments of the original spectrum {ABC} and a, b, and c¢ for the segments of the
superimposed spectrum {abc}. Recall that in our notation, the SAMCELL here is
s=[0 1 1] and the SPECCELL is W=[1 1 0].

Thus, in matrix notation: M
pd

a 213 -1/3

b = -1/3 -1/3

i - [ )

113 213
We propose to invert this to recover the original segments A and C from the

superposition {abc}. [We notice that because B=0, we could have kept this in the
rightmost column vector, in which case there would have been a center column in the
matrix, which could have had arbitrary values! Clearly inverting a matrix for which one
column is arbitrary is not going to give us a useful answer.] Since the matrix is not
square, we need to use a pseudo-inverse. Calling the superposition matrix M, we
have the simplest calculation of the pseudo-inverse as:

A a

b

C. c
-1

2/3-1/3-1/3 1} 2/3 -1/3 213-113-1/31 [a
-1/13-1/3 2/3 1 -1/3 -1/3 -1/3-1/3 2/3) | b
c

A
(1)
C

( MtM)~1 Mt

| -1/3 273

1-10 al
= b | (2)
[0-1 1J [C,J

The same result is obtained using the pseudo-inverse, pinv, in Matlab.
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We note, trivially, by inspection, that this works. Section a minus section b clearly
- gives A. Likewise, ¢ minus b gives C. What about B? There was no equation for B.
B=0 by the bandlimiting assumption, so we did not solve for it. That was the whole

point.

Perhaps the reader is thinking: "OK - This works for the triangle in the example, but
what about a general spectrum?" First of all, nothing in the mathematics used the
actual shape of the spectrum. All that we achieved by using a triangular shape is an
easy-to-verify result - and it seems to work perfectly.

2c. Workinq About the Limits

Fig. 5 shows some additional example spectra (Using Program 1). Here we
generate (by choosing DFT values) a random but bandiimited spectrum. We then
take the inverse DFT to get the corresponding time sequence, which is then sampled
by setting every third sample to zero. The DFT of the sampled result gives us {abc}

and we get {ABC} using equation (2).

Fig. 5a shows the case of w=0.1. Sampling 2 of 3 gives us images as expected.
Complete recovery could have been obtained more simply with a low-pass filter in this
case. Fig. 5b shows a similar case except here w=0.15, and things have gotten more
crowded. Again, we do get perfect recovery using equation (2), and a low-pass would
still have worked, since w=0.15 and a sampling rate of 1/3 would support a bandwidth
up to (1/2)(1/3)=1/6=0.16667. (In this case, this means that the loss of samples at the
rate of 1/3 would not have aliased the result.) Note as well the "recoverable” copies of-
the original spectrum on the interval 1/6 to 1/3 in both Fig. 5a and Fig. 5b.

[ We should perhaps mention that here we are working with spectra that are limited
to a bandwidth w where we are choosing w over a range to illustrate various resuilts.
At the same time, our recovery equations came from an assumption of a SPECCELL
w=[1 1 0] which really means that w=1/3. Because, as is obvious, a spectrum
bandlimited to some frequency w, is also bandlimited to wz, as long as we2wy,

W=[1 1 0] works for the examples of w=0.1 and w=0.15. We could have used
W=[1 0 0] for these two cases as well. W=[1 1 0] will continue to work for 1/6<w=1/3,

although W=[1 0 0] would not.]

Fig. 5¢ shows w=0.25, which is greater than 1/6 of course. We note that the
sampled spectrum is now distorted on the interval of 0 to 0.25, and that the region
from 0.25 t0 0.5 is imaged. No clear copy of the original is now available for fittering.
Yet equation (2) returns the original spectrum correctly. :

\ Fig. 5d is a limiting case as w becomes 0.33, just short of 1/3. We see that
equation (2) does still work. This compares to the triangle example of Fig. 4. Now,

critically, Fig. 5e shows w=0 34, and we see that the original spectrum is not

recovered exactly anymore, as the limit was 1/3. [Since the spectrum is random, not
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all examples using w=0.34 will clearly show a failure when plotted on this scale, but a

more sensitive analysis shows that w=0.33 always works and w=0.34 never works, as
expected] As we might expect, as the bandwidth continues upward beyond 1/3, the

failure to recover is more easily seen. Fig. 5f shows the case of w=0.4,
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Fig. 5a. w=0.1
Here we find that sampling

2 of 3 gives two additional
replicas as in equation (1).
Recovery by equation (2)
is complete. Recovery by
low-pass filter would also
be practical here. [All
spectra in Fig. 5 are
shown as magnitudes.]

Fig. 5b. w=0.15
Similar to Fig. 5a except

here we have a wider
bandwidth, but one that is
still less than 1/6=0.16666.
Recovery using equation (2)
is complete, and a low-pass
filter with cutoff around 1/6
is also still possiblle,
although we would need a
fairly sharp cutoff.




In the case of ordinary uniform sampling, when the bandwidth just slightly exceeds
the limit, only the actual overlapped portion of the spectrum is non-recoverable. The
same is true here, where we see in Fig. 5e and Fig. 5f that a region centeréd about
1/6 is recovered perfectly. This is also true for a region around 1/2, but the spectrum

is still zero there.
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The fact that some portions of a spectrum are recoverable without error may be of
some use at some times. But it is not true that any portion of the corresponding time-
domain sequence is recoverable without error in such cases. All samples are now
wrong to some degree - easily seen as a consequence of the uncertainty principle.

Ong:nal Spectrum

/\»\W

1 1 1 1 1
0 o1 02 03 04 05

Spectrum of Sampled Signal

L A
T o'z 63 04 T8 07 08 05 4

Recovered Spectrum 3

/’\/”“ W

I ) 1 1
0r5 06 Q7 13} 09 1

15

05r

Original Spectrum

/\/\/\,ﬂfww\ﬁ

Spe.ctrum of Sam‘pled Sig-nai

J

1 ] X
08 07 03

- AN .
Y R S E R ¥ R T Y- —

0.

-

05k

oF

0666 recovered Recavered

H \;j\“"tf \f\‘ 0. 266;5 Spectum /\q /\y

"\/\

3 1 1
o 01 o2 03 04 05 06

AN-356 (9)

Fig. 5e. w=0.34
Here the bandwidth

exceeds 1/3 (everso -
slightly) and recovery
by equation (2) fails. This
is most evident right
around 1/3. Note that
the spectrum is still
completely repaired for
a region centered at 1/6.
This does not mean that
any portion of the time-
domain sequence is
recovered without error.

Fig. 5f w=0.4
At this point, the bandwidth

exceeds 1/3 by an amount
of 1/15. Equation (2) does
not recover the entire
spectrum. There are
regions of width 2/15=
0.13333 centered about
1/3 and about 0 that are
corrupted. The region

~ of width 0.2 centered about

1/6 is recovered without
error. Again, each time
domain value will have
some error. .




3. ASECOND EXAMPLE - PLAYING WITH LENGTH 4

3a. SAMCELL =1 10 0], Toward a General Approach

It will be useful to look at a second example which we have previously studied by
using a different approach that was possible in this case [2]. This is the case of
keeping two samples and discarding two. The average sampling rate is thus 1/2 and
we should be able to support a bandwidth of 1/4. This example also illustrates the
summation approach rather than the subtraction approach (which works best when
only one sample is discarded in any SAMCELL). The SAMCELL for this case is

s=[1100],

Here, even though we start with a real spectrum, the sampled spectrum becomes
complex. We will form the sum of samples ...,-4,0,4,8,. .and ... -3,1,5,9, ...
Fig. 6 shows the situation for a triangular shape (again - just used for easy sketching).
Here the original spectrum, Fig. 6a, has four segments {ABCD}, and we know that
B=0 and C=0. Fig. 6b and Fig. 6¢ show the spectra of the two subsequences. Fig. 6b
for the samples ... , -4, 0, 4, 8, ... corresponds to the SAMCELL s=[1 0 0 0] component
of the superposition and is just Fig. 6a multiplied by 1/4 and replicated about
frequencies 1/4, 1/2, and 3/4. Fig. 6¢ shows the spectrum of samples ..., -3, 1, 5, 9,
... corresponding to the SAMCELL s=[0 1 0 0] component, and is complex (due to the
shift of one sample). (The magnitudes are the same for both subsequences.) Fig. 6d
is intended to be the sum of Fig. 6b and Fig. 6¢, which is difficult to draw [2],50 we just
show it as a squiggly line segment {abcd}. Note that it was the cancellation of the
replicas centered at 1/2 that allowed us to recover the spectrum with filtering and shifts
21 R o _ o

1

(@)

/4 12 3/4 1

s=[10 0 0]

s=[0 1 0 0]

- a b c :‘d_
(d) j\/w v\_@/\/&\/u s=[1100]

P H
0 /4 1/2 34 1

Fig. 6 Sampling 2 of 4: SAMCELL s=[1 10 0]
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Using the current method we again start with the equations that give the
superposition leading to Fig. 6d.

a=Ald+D/4+ A4 Di4 = A2+ (14)/4 1D (3a)

b =A/4 + D/4 A4 DA = [(1-)/4]A (3b)
¢ = A4+ D/4 - Ald +DI4 = [ (1+])/4 ] D (30)
d=D/4+ Al +D/4 +N4=DI2+[ (1+)/4 1A (3d)

or in matrix form

a 112 (14
bl = {(1§4 0 A (4)
c 0 (1+)4 [ D] -

d (44 112

This has the pseudo-inverse solution:

[3] _ {1 ] o]

Since we started out with a real spectrum {ABCD} we need to see how this matrix
multiply gets rid of imaginary parts. Thus in verifying the recovery, using equation (5)
and Fig. 6, we calculate: '

)

O own

A =A/4 + D/4 + A4 -iD/4
+D/4 + Al4 jA/4 -D/4 +D/4 + jAJA + AJ4 -jD/4
+A/4 + jDI4 -jAJ4 - D/4 =A (6a)

D = -jA/4 D4 -A/4 + jD/4 -

+AJ4 + D/4 -Al4 + [Di4 -A/4 -jDI4 + jAJ4 + Di4
+Al4 + DI4 + jAJ4 + DI4 =D (6b)

3b. A Simple Case Going Back to Uniform

Clearly, if the SAMCELL is s=[1 0 1 0] we have the case of sampling at a rate of
1/2 and a bandwidth of 1/4 can be supported: SPECCELL W=[1 10 0]. Even the

easiest cases should work!
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Fig. 7 SAMCELL. s=[1 0 1 0] reverts to uniform downsampling

Fig. 7 shows the sampling situation much as we have done it before. We easily
write down the equations in matrix form:

a 1/2 0

b = 0 1/2 A’ (7)
c 1/2 0 D

d 0 1/2 |

which has the simple pseudo-inverse solution

a
[A} [ 1 0 1 0] b (8}
D = [0 1 0 1 c
d
This is just:
A=a+c¢c (9a)
D =b+d | (9b)
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{abed)

For this example, we see that again the pseudo-inverse gives us a perfectly correct
answer. What does not come out here is a slightly simpler answer, evident from Fig.
7, that A=2a, since a=c. This is really equivalent to A=A, which would come out in the
case of SAMCELL s=[1 1 1 1] in which case the superposition matrix and the recovery
matrix are both 4x4 identity matrices. While we would need an ideal low-pass filter for
this simple solution, the s=[1 0 1 0] case is still ordinary sampling (or re-sampling if
you prefer). So perhaps the simplest answer does not come out. Ordoesiit.....?

Fig. 8 is offered to address this question, and to remind us of what an actual
recovery would involve in terms of ideal filters and spectral shifts. In Fig. 8a, the
superposition spectrum is separated into its four segments a, b, ¢, and d by ideal
filters. In getting segment A back we need to add segment a to a shifted version of
segment ¢ - hence the multiplication of ¢ by a sequence (-1)". Likewise D is obtained
by adding d to a shifted version of b. Adding A to D recovers the original spectrum.
Fig. 8b and Fig. 8¢ show simplifications of Fig. 8a down to a single filter with gain 2.
(Of course the filter from 3/4 to 1 is the same as a filter from -1/4 t0 0.) It is thus
possible to see that the actual recovery reduces to the traditional approach for this

case.

Fig. 8. Fig. 8a
corresponds to
equation (8). This
reduces to Fig. 8b
and Fig. 8¢, which
suggests the
traditional low-pass
route to recovery.
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4. KEEPING THREE OF FOUR AND THE USE OF A SPECTRAL SHIFT

Our previous example [1] kept three of four samples, and we divided the frequency
range into eight segments to do it. Such a division seems convenient for the general
case, but here we can redo the problem using only four segments. Further, we need
to keeps such alternatives in mind as they may be useful in an actual implementation.‘

Keeping three of four samples should support a bandwidth of (1/2)(3/4)=3/8. Smce
we are discarding only one sample, we can use our subtraction method (as we did
with the s=[0 1 1] SAMCELL) by using the s=[0 1 1 1] SAMCELL. Fig. 9a shows the
generation of the superimposed spectrum {abcd} from the original {ABCD}. Note that
here we have centered the segments in a different way, so that A is centered about 0.
Also; note that we have chosen C=0, centered about 1/2, so that w=3/8.

Here it is easy to obtain the superposition equations much as we have done
before: :

a 34 414 -1/4 ] [A
bl = |-1/4 3/4 -14 B} (10)
c /4 /4 14 | |D -
d /4 114 34

~ and the recovery equations using pseudo-inverse are:

17010
=101-10
0 0-1 1

Fig. 9b and Fig. 9¢ show exactly how__the'se segments are separated from the sampled
spectrum and recombined according to equation (11).

A
B
D

(11)

0T

If this had been done with eight segments, the matrices would have been twice the
size [1]. Each matrix element will appear in diagonal positions, and half the matrix will
be zeros. We will need to recognize this pattern as implying that the solution is
actually smaller than the matrix size appears. Keeping extra segments may well
permit us to use one general program for a wider variety of cases.

5. THE GENERAL CASE OF A LENGTH FOUR SAMCELL

We have seen above that we could solve length four SAMCELL recovery
problems by using four segments in frequency. For the case of Section 4 however,
this involved a shifting of the segment boundaries. That is, there is a difference
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Vertical units indicate
multipies of 1/12

cancels_—7
to zero

Fig. 9 Here a bandwidth of w=3/8, W=[1 1 1 0] is sampled by s=[0 1 1 1] so that
segments {ABCD} are replaced by segments {abcd}, as shown in Part (a) of the
figure. In Part (), the replicas about 0, 1/4, 1/2, and 3/4 are shown as various
dashed and dotted lines. Equation (11) indicates a reconstruction of the original
spectrum from the pieces indicated in Part (b) of the figure. Thus we have A=a-c¢
and B = b - ¢, forming Part (c) of the figure. Segment C is zero by assumption, and
segment D is d-c (not shown). '
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between problems with 2 of 4 kept and problems with 3 of 4 kept. In general, it will
make a difference whether we keep an even number or an odd number of samples in
our SAMCELL. To avoid this, and to simplify the writing of a general program, we can
choose twice as many frequency segments. For a length 4 SAMCELL, this means we
- will have eight frequency segments of width 1/8, and so on.

Fig. 10 shows such a spectrum with eight segments {ABCDEFGH} of which pairs
that are symmetric about 1/2 may be zero. For example, for the problem of Section 4
we choose segments D and E to be zero, and this is exactly what we mean by a
SPECCELL of W=[1 11 0]. While Fig. 10 shows all of {ABCDEFGH} drawn as non-
zero, our interesting (solvable) problems will always have segments that are zero
(reducing the specitral size and thus allowing samples to be skipped). Note that the
zero segments need not be D and E, but might be C and F, B and G or A and H:
W=[110 1], W=[1 0 1 1], and W=[0 1 1 1] respectively.

Fig. 11a, Fig. 11b, Fig. 11¢, and Fig. 11d show the spectral components
corresponding to the four possible sets of samples, s=[1 00 0], s=[0 10 0],
s=[0 0 1 0], s=[0 0 0 1]. The spectrum of the sampled signal is the sum of these four,
weighted according to the particular SAMCELL. For example, if s—[1 1 0 0] then we
add Fig. 11aand Fig. 11b. The welghts on the spectral replicas as in Fig. 11, are the

values of a length 4 DFT matrix:

1 1 1 1
D, = (1/4)e¥@ k= (114) 1 4 jl % (12)
-1 - _
1§ -1 4

where n and k are indices running from 0 to 3, right to leit, and top to bottom, and
deployed as seen in Fig. 11a through 11d.. This weighting is just a fundamental
observation from the sampling of a discrete time signal.

Looking at Fig. 11, top'to bottom, segment by segment, We see that each segment
of {abcdefgh} is the sum of 16 possible pieces - four overlaps of. each of the four
. possible phases of sample spacmg 4, For example, with s = [s(1) s(2) s(3) s(4)]

a=s(1)[ A4 +G/4 + C/4 + E/4]
+ s(2)[A/4 -jG/4 + [C/4 -E/4]
+s(3)[A/4 - G/4 - Cl4 + E/4)

| +s(4)[A/4 +jG/4 -iCl4 - E/4] (13a)
= (1/4) [ s(1) +s(2) +s(3) + s(4) 1A
+(1/4)[ s(1) —js(2) -s(3) +js(4) | G
HUA[ s(1) +]js(2) - (3) -js(4) ] C
(13b)

+UA] s(1) - 8(2) + 5(3) -5(4) 1 E
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Fig. 10 An original triangular spectrum for w as much as 1/2

s=[1000]
4 /4 /4 i/4
s=[010 0]
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s={000 1]

- a. 'bl:c | d 1 e N f-l g.h L
0 114 Y VS

Fig. 11 Four different phases of sampling by 4
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This describes the segment a in terms of segments A, G, C, and E. Note that we
need to consider in general all cases when s(1), s(2), s(3) and s(4), the elements of
SAMCELL s, may be 10r 0. If all of s{1), s(2), s(3) and s(4) are 1, then a=A as it
must,

In sefting up a general 8x8 superposition matrix M that relates the segments
{abcdefgh} to the segments {ABCDEFGH} we would have eight equations similar to
equation (13b). There are only four different values for the matrix elements, obtained
from D4 (the DFT matrix) and from s as:

" r(1) 1 1 1 1 s(1)
) =11 4 -1j]]s@ | (14) .
| r(3) 1 -1 1 1] | s(3) |

r4) 1 -1 4 s(4)

These end up populatihg the matrix as:
/-- M

fr(1) O r(4)7 0 3 0 2 o077
0

a A
Fb 0 K1) 0 r@) (3 0 2| B|
c () 0 r1) 0 r4 0 K3 O [|C
d{=10 r2 0 1) 0 K4 0 r3)||D (15)
e (3) 0 12 0 r1) O rdy O ||E
f 0 13 0 r2) 0 r1) 0 r4]||F
g (4 0 3 0 r2 0 r1) 0}]|G
h H

[0 4 0 3 0 2 0 (1)

[ W

)

L

At this point, it is useful to reflect that if s=[1 1 1 1] then r(1)=1 while r(2), r(3), and r{4)
are zero, and the matrix is just the identity matrix as it should be. _

Of course in general s is not [1 1 1 1] and all four of the r values are non zero. In
the cases where s has one or two values that are zero, two or four of original spectra
segments must be zero to reflect the reduction of available bandwidth. This is the final
key to finishing the problem. In the case where D and E are zefo, we remove the '
center two rows of M, the ones on the same level as D and E. If other pairs are zero,
we remove those rows from M. If SPECCELL is W=[1 0 1 0] for example, we would
remove rows 2, 4, 5, and 7, corresponding to segments B, D, E, and G. This would
means that we could expect recovery if the SAMCELL has one or two zeros.

The final step is simply to obtain the recovery métrix as the pseudo-inverse of the
- reduced M. '
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6. PROGRAMS USED

While it is often not necessary to present program listings that are used to generate
calculations and figures in a repott, it is also true that sometimes the code offers a
useful, unambiguous, and definitive statement of what is actually being done. Such
seems to be indicated here where the programs are more definitive than the equations.

6a. A Note on Bandlimiting

A condition on our procedures here is that the signal to be sampied is bandlimited in a
well-defined way. lt is also the case that our transformation between time and frequency
domains pretty much has to be through the use of the DFT (and its inverse). When we
think about cobtaining bandlimited signals, we may tend first to think in terms of sinuscidal
waveforms and sinc functions in the time domain. In Program 1 below, however, we are
not really concerned with the time-domain waveform, except as we want to sample it in a
particular way. Accordingly we find it convenient to just select values for the DFT and
set the DFT to zero for regions outside the bandwidth we have selected for our test. In -
this case, the time-domain waveform is actually a finite sum of sinusoidal waveforms all
of which are integer multiples of some fundamental ("DFT Harmonics").

In Program 3 we do want to look at the actual time-domain waveform - to see it before
and after sampling, and after recovery. For example, if we want a waveform bandlimited
to 1/4, it is natural to choose something like a cosine at a frequency of 0.2. Clearly this is
bandlimited, but does the DFT, our only available spectrum analyzer, think it is
bandlimited? Of course, this all depends on the length of the DFT. If we do not choose
the length correctly, even a sequence that "is" bandlimited can and does, properly, come
back without bandlimiting. In our example, if we do choose the frequency 0.2, then there
are 5 samples per cycle in our sequence. Any DFT length that is not a multiple of 5 will
give us specitral "leakage." So why not use length 5 if we know it is right?

Well, we also need to consider the remainder of our study. We are going to sample
by a SAMCELL that is length 4. Thus since we are looking at DFT's after this sampling,
we will need to choose a DFT that is a integer multiple of 4. To meet both conditions,
we choose length 20. If this seems too contrived, we can just take a very long FFT of
many many cycles and accept some minor recovery errors.

6b. Program 1 - twoof3.m

This program, twoof3.m, was used to generate Fig. 5a through Fig. 5f, the case where
two or three samples are kept (one of three is replaced by 0), for a variety of bandwidths.
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% twoofl.m
function twoof3 {B)

o

L=

Sampling Two of Three Samples
for Different Bandwidihs

L

e

B. Hutchins Sept. 2003
(Fox Fig. 5)

e

S

B=round (LO0*B) ;

% Random Complex, but Bandlimited Spectrum X1 (k)
X1 (1) =rand+j*rand;
for k=1:B
X1l ({k+l)=xand + j*rand;
end
% Smoothen for better display example X (k)
for k=2:B-1
X(k)=(X21(k-1}+X1 (k) +X1{k+1))/3;

end

X(1)=X1(1);

X(B)=X1(B);

% Symmetric Upper Side

for k=1:B
X{99-k+1)=X{k+1);

end

% FFT is Length 99

figure (1)

subplot (311)

plot ([0:1/99:. 99] ,abs (X))
axis([-.05 1.05 -.1 1.5]);

% Sampling Seguence

s=[0 1 1 01101 1];

g=[s s 8 88 8 5 s 8 s s];

% Seguence

x=ifft (X);

% Sampled Sequence

X8=X.%s;

% Spectrum of Sampled Sequence
X8=fft (xs) ;

subplot (312)
plot {[0:1/99:.99],abs (XS))
axis([-.05 1.05 -.1 1.5]);
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% Repair the FFT

for k=1:33 % Segment A from a and b
XR(k)=X8 (k) -XS(k+33};

end

for k=34:66 % Segment B

XR(k)=0;

end

for k=67:99 % Segment C from b and ¢
XR(k})=-XS (k-33)+X8 (k) ;

end

subplot (313}
plot ([0:1/99:.99],abs (XR))
axis([-.05 1.05 -.1 1.51);

figure (1)

6c¢c. Program 2 - pinvs.m

This program calculates the matrix M that describes the spectral superpositions and
the pseudo-inverse matrix p that describes the repair procedure. This follows a general
case of which the length 4 steps are given in Section 5. The input parameters are the
SAMCELL and the SPECCELL as described. Because we need to be able to handle
even and odd lengths for the non-zero elements of a SAMCELL, in many cases the
matrices M and p are twice as large (in each dimension) as seems necessary (see
comments in Section 4). In such cases, the actual matrix elements are repeated twice,
along the diagonal, for each 2x2 submatrix of the results. -

function [M,pl=pinvs (samcell, speccell)
Find the matrix M that determines the sampled spectrum
in terms of the original spectrum. Find the matrix p that
inverts this, based on the sampling cell and the bandwidth.
samcell is the basic sampling cell. For example, if we
are keeping three samples of four, samcell is [1 1 1 0]
where the samples kept are at 0, 1, and 2. L = length of
the samcell.
gpeccell is another wvector the same length as samcell.
It divides the freguency range of 0 to 1/2 into L segments
For example, keeping three of four samples allows us to

a° o dP d° O of

o o2

o &P

% support a bandwidth of (1/2)*%(3/4) = 3/8 so the speccell
% could be [1 1 1 0].
¥ B. Hutchins Oct. 2003
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s=samcell;
W=gpeccell;
L=length(sg};

DFT Matrix

H‘ﬁ o

M
=0:L-1;
=0:L-1;
l*k
nk:( ~3*%2%pi /L) *nk;
ml=exp (nk) ;

for k=1:L
r(K)=(1/L) *sum{s*ml(:,k});
end
I;
r={r(1) r{L:-1:2}1;
LL=2%*1L;

mm=zeros (LL,LL) ;

% for convenience, make three copies, populate matrix, and then
% keep the center one.
mm= [mm, mm, mm] ;
ri=0;
for k=0:2:2*LL

ri=ri+l;

for n=1:LL

mm{n,k+n) =x {ri) ;
end
if ri==L;ri=0;end

end

for k=1:LL
for n=1:LL
m(n,k)=mm{n, k+LL};
end

end

m;

% NOW remove rows accordlng to bandwidth
W=[W £liplr(W)];

mm= ] ;
for n=1:LL
if W(l’l) ==
mm= [mm; m(:,n).']1;
end
end
M=mm;
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% simplify the output display
gz=gize (m); :
for k=1:s2(1)
for n=1:8z(2)
if abs(real(m(k,n)))<0.0001;m(k,n)=J*imag(m(k,n));end
if abs(imag(m{k,n)))<0.0001;m(k,n)=real{m(k,n));end
end :
end

% Use Matlab psseudo-inverse to avoid possgible numerical
% problens using matricies
p=pinv{m)."';

% simplify the output display
sz=size(p};
for k=1:32(1)
for n=1:8z(2)
if abs(real(p(k,n)))<0.0001;p (k,n)=j*imag(p(k,n)) ;end
if abs({imag(p(k,n)))<0.0001;p(k,n)=real (p(k,n)) ;end
end
end

m=m."';

6d. Program 3 - tdr.m

This program begins with twenty samples, four cycles of five samples each, of a
cosine of frequency 1/5. (See notes on bandlimiting is Section 6a above). The results

will be taken up in Section 7c.

Time-Domain Recovery of 2 of 4 Samples
tdxr.m

e Je

ae

B. Hutchins . Oct. 2003

D\D

% Generate Original Signal and Look at its FFT
n=0:19;

X=cos (2*pi%*0.2*n)} ;

figure (1)

subplot (511)

stem([0:12],x)

title('original time-domain signal')

axis([~2 22 ~1.2 1.3]1);

X=fft (x) ;

subplot (513)
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stem(f0:.05:.95],real (X})
axis([-.1 1.1 -14 14]);
title('real part of spectrum')
subplot (515)
stem({0:.05:.95],imag (X))
axis([-.1 1.1 -12 121);
title('imag part of spectrum')

% Now Sample With s=[1 1 0 0] and Look at ¥FFT
s=[1 1 0 0];

s=[{s 8 8 8 8];

XS=X.*3;

figure (2)

subplot (511)

stem([0:19],xs)

title('sampled time-domain signal')
axis([-2 22 -1.2 1.31);

Xs=£fft (xs8) ;

subplot (513)
stem([0:.05:.95],real (XS))
axis([-.1 1.1 -8 8]);

title('real part of spectrum')
subplot {515)
stem([C:.05:.95],imag(Xs8))
axis{[-.1 1.1 -8 8]1});

title('imag part of spectrum')

% Recover Spectrum using p=[1 1+3 31 0; 0 -j 1-3j 1]
XR=zeros (1,20) ;
for k=1:5
ZR (k) =XS (k) + (1+7) *XS (k+5) +J*X8 (k+10) ;
XR(k+15)=-§*XS (k+5) +(1-3) *X8 (k+10) +XS (k+15) ;
end
xr=1f£ft (XR) ;
Xr=real (xr) ;
figure(3)
subplot {511)
stem{[0:19],x)
axis{[-2 22 -1.2 1.31):
title('original time-domain signal')
subplot (513)
stem([0:19],xx)
axis([-2 22 -1.2 1.31);
title ('recovered time-domain signal!')
subplot (518)
stem({[0:19], (xr-x}});
axis([-2 22 -1.2 1.3]});
title('errox in time-domain')
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7. A COUPLE MORE NOTES AND EXAMPLES

Here we catalog the sampling cases we have looked at above.

$ w Where
s=[0 1 1] W=[110] Section 2b
s=[0 1 1] W=[1 0 0], W=[1 1 0] Section 2¢
s=[1100] W=[1100] Section 3a, Reference [2]
s={[1010] W=[1100] Section 3b
s=[0111] W=[1110] Section 4, Reference [1]

Some extensions and additional examples are offered in this section.

7a. Relation to Downsampling

We saw in Section 2b that we could support a bandwidth of w=1/3, W=[1 1 0] with
s=[0 1 1], in which case the spectral recovery equations were:

el

Or we could have chosen s=[1 1 0] in which case the recovery equations would become:
A 1 05+0866 0]]a |

= b (17)
C 0 0.5-0866] -1 c
and so on. This bandwidth of w=1/3 is shown in Fig. 12a, and we note that there are
three natural segments A, B, and C. Fig. 12b shows the case of w=1/6, W=[1 0 0], in
which case we have six natural segments. It is possible of course to represent w=1/3,
W=[1 1 0] as six segments as seen in Fig. 12c. Of course a bandwidth of 1/6 can be
regarded as a bandwidth of 1/3 for which the portion from 1/6 to 1/3 happens to be zero

throughout its length. If we solve the problem with w=1/3, W=[1 1 0], with six segments,
the recovery equations with s=[0 1 1] become:

(16)

a
b
c.

A 0
-1

0
0
1

0

00O

10 -1
010
0 0-10 (18)
0 00 -1

Mmoo

-

—“-p SO0 TO
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~_ A .
(a) \ /
Fig. 12 Choosing different

0 1/3 numbers of segments for

different bandwidths.
® \ /
' B E

which easily reverts to equétion (16) if we recombine the segments from six back to just
three. In fact, it is this expanded version that it’s the default output in Program 2.

When the bandwidth is truly 1/6, we could of course still use equation (18). But if we
do put in W=[1 0 0] instead of W=[1 1 0], we get the recovery equations:

w
(19)

1 0 05 0 -05 0
c-05 0-05 0 1

[F]

Can both of these be right? Fig. 13 shows the case of s=[0 1 1] for W=[1 0 0].

-~ DO S0 O'm.

Fig. 13 Samphng a bandW|dth
of 1/6 (W=[1 0 0]) for case
s=[0 1 1].

4
-

ap © A
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We see that equations (18) and (19) work. Fér‘ example, using equation (19) we have:
A =a-{(1/2)c-(1/2)e (20a)
While equation (18} gives us:
A=a-c (20b)

and both these are right as can be seen by inspec-tion‘. Note that with equation (19),
segment B is zero by assumption, while using equation (18) we have:

B =b-d - (20¢)
which is clearly zero, by inspection. And so on.

In this case, where the bandwidth is 1/6, we do not need two of three elements of the
SAMCELL to be ones — we can use s=[1 0 0] for example. Fig. 14 shows this sampling
— note that we really do need to use six segments here.

A Fig. 14 Sampling a bandwidth

(@) . F of 1/6 (W=[1 0 0]) for case
B c D E s=[1 0 0] reverts to
} + + + ¥ -downsampling by 3.
0 13 2/3 1 ,
(b)
1/3

For s=[1 0 0] and W=[1 0 0] the recovery equations become:

[ a |
A 101 010]{|b _
= lc (21)
F ‘01010 1id
e
f.

which is correct by inspection.
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To complete this line of study, it is useful to be sure we know what happens when ail
the samples are kept. That is, for s=[1 1 1] we could start with the assumption that we
have a full bandwidth w=1/2, W=[1 1 1], in which case, the recovery matrixis just:

100000
010000
M= | 001000 (22a)
000100
000010
L00000 1

which is just an identity matrix as it should be. Of course, this shouid also work if the
bandwidth is w=1/3, W=[1 1 0}, in which case the recovery matrix is:

1700000

M= {010000 (22b)
000010
000001

Finally, we can also support the even smaller bandWidth w=1/8, W=[1 0 0]; which gives
the simplest recovery matrix:

M = [1 000 | (22¢c)
001

00
000

7b. Bandpass Sampli-ng _

We suggested above that the bandwidth that is supported in our procedures need not
be a continuous segment, and this we need to show by an example. Fig. 15 shows the
case of W=[1 0 1] with s=[0 1 1.  The recovery equations for such a case are:

f a
A 1.0 0 0 -1 O b
C| = 0 01 0-1 0 c (23)
D 0O -1 0 1 0 0 d
F 0O -1 0 0 0 1 e
3 f o
That this works is seen from Fig. 15. We note from equation (23} that:
, A =a-e (24a)
and
C =c-e (24b)

which are correct by inspection.
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(a)

0 16 1/3 172 23 5/6 1

(b)

(@

Fig. 15 Bandpass sampling example. Here in (a) the bandwidth from 0 to 1/2 is
comprised of two non-continuous segments of total width 1/3. Sampling with
s=[0 1 1] gives three overlapping images (b) which sum to (c). Vertical units are
multiples of 1/9..
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7c. Time-Domain Recovery

Most of what we have done in this note involves considering how the spectra of
sampled signals are composed of the superposition of component spectra of different
sampling sub-sequences. We then take segments of the superimposed spectrum and .
reassemble the pieces in an appropriate way. This is easy to do on paper where
extracting a particutar segment is a matter of redrawing the segment with vertical sides -
the equivalent of using ideal filters. It is also easy to just shift these segments by
redrawing them in different positions, adding them, etc. For example, see Fig. 9.

~ 1 ’
~ continuous spectrum el
~ o as seen p_reviously ~
(a) AN / P
~ Ve
\-\ P -’/ . 3
0 A 15 14 B 112 C 3/ D 1
| 114 14 - 1/4 14 14 14  1/4 114
(b) | | | | | | l | $=[100 0]
"0 005 02 03 045 055 07 08 0.95 1
o | ¥ 1/|4 .;1i4 /4 .j/|4 | -1l/4 1/4 /4 “0100]
(1-)/4 1/2 (1§y4  (1+)i4 112 (1+y4
dy | '-
(d) ai 's=[1100]
5005 a b o 055 © a
(e) ¥ _
/"/’
I
e —tr } t *
tj 0.05 0.2 03
B e € a4 D 1

Fig. 16 A bandlimited signal (a cosine of frequéncy 0.2) is sampled with s={1 1 0 0].

Here we have chosen

recovery of segment Aas A=a+ (1+)b +jc according to equation (5).
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In order that we don't totally lose track of the fact that we are talking about time-
domain sequences, in this example we will work with an actual bandlimited sequence, a

cosine sequence in fact. This will permit two interesting things to happen.

First,

instead of drawing spectra that are triangles (or similar continuous shapes), the spectrum
will become discrete. In addition, when we did choose triangular spectra, the

orlginaj time-domain signal
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Feal pait of specium
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®) » i i
-0k N | \ . , .
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Fig. 17. A cosine of frequency 0.2

(a),(b), and (c) is sampled by

keeping two samples and then
discarding two samples, and so
on (d), (e) and (f). Compare
Fig. 17 (e) and (f) to Fig. 16 (d).
By reconstructing the spectrum
using equation (5) and inverting
the resulting DFT, we obtain
the time domain cosine (g) with
no error (h).




corresponding time-domain sequences were very small except in a very localized
position (they were squared sinc functions) and not too easy to plot and study. We never
plotted these, and they would not have been convincing had we tried to argue
reconstruction based on time-domain plots. Here we can show that we get cosine
samples back - exactly.

Fig. 16 shows the sampling situation where s=[1 1 0 0] and the spectrum is a single
cosine at the frequency 0.2. Thus we might think of W=[1 1 0 0] as being the appropriate
general (continuous spectrum) case here since the frequency 0.2=1/5 is below 1/4.

This situation compares to the continuous spectrum assumed in Section 3a, and is
shown dashed in Fig. 16a. The spectrum of the two sampling components,
corresponding to s=[1 0 0 0] and s=[0 1 0 0] are shown in Fig. 16b and Fig. 16¢, with the
sum, the superposition spectrum {abcd} shown in Fig. 16d. Here the recovery equations
are represented in equation (5) and Fig. 16e shows the recovered spectrum. We note
the cancellation of the replicas at frequency 0.05, which otherwise was inside segment
A. This is very similar to Section 3a, except here we have a discrete spectrum.

Fig. 17, generated by Program 3, shows the recovery i'n'the time domain. Fig. 17e
and Fig. 17f correspond to Fig. 16d. In Fig. 17g we see the recovered time-domain
cosine. Note that this was recovered from Fig. 17d, without error (Fig. 17h).

We saw in Section 7b that a bandpass sampling example for our procedures given
here was possible. In the case of a single frequency cosine, we can reduce the
sampling rate virtually without limit because the spectrum has zero actual width (one
discrete frequency). In fact the procedures in this note are useful for some general
bandpass sampling problems (which are often set up and solved individually), even for
the uniform sampling case as will be illustrated in Fig. 18 and Fig. 19.

Fig. 18 shows the case where we have divided the spectrum of the cosine into eight
segments {ABCDEFGH)} rather than just the four segments {ABCD} in Fig. 16. Now the
cosine appears only in segments B and G (W = [0 1 0 0]), and we have less bandwidth
to recover. Further, we can now use a SAMCELL s=[1 0 0 0], a downsampling by 4.
Program 2 gives us the recovery equations:

o
b
Bl [01010101]]c
= }d (25)
G| (10101010]]e
f
g
| h

AN-356 (32)




@ 115
- v J/ b s ' ' .' 3 L . =
0O A B 14 C D 12 E F ¥ G ‘H 1
®) | 1/_|4 114 1/|4 1/|4 1i4 1/|4 1i4 1|/4 $=[1000]
o a Yd e _faurg _—h 1
_ g
‘._—/—"
./’/
// ’ q
- /-/ )
_ 7
(c) ' //‘
_ 15 1 z/'/
:'“ S — t + o + -+
0 B 4 172 34 G 1

Fig. 18. Here we have a cosine at frequency 0.2 which resides on!y in seg_ments B
and G of (a). Sampled with s=[1 0 0 0] we get four replicas total with amp_htudes_ of 1/4,
being purely real, as seen in (b). Equation (22) indicates that segment B is obtained as

B=b+d+f+hasseenin(c)

Fig. 18¢ shows the recovery of the segments B and G fnorh the superposition spectrum
of Fig. 18b. The arrows show the reconstruction of segment B from segments b, d, f,

and h.

Fig. 19 shows results which correspond to Fig. 18 as obtained with a program similar
to Program 3. This we can compare to Fig. 17 as well. Here we have eight cycles of a
cosine of frequency 0.2 (Fig. 19a, 19b, and 19¢c). The time domain sequence in Fig. 19a
is sampled with s=[1 0 0 0] to form Fig. 19d. (Here the spectrum is purely real as seen in
Fig. 19e and Fig. 19f) Fig. 19g does show complete recovery of the time domain
cosine, from the sampled cosine of Fig. 19 d, without error (Fig. 19h).
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Fig. 19. A cosine of frequency 0.2
(@), (b)and (c) is downsampied
by 4 as in (d), (e), and (f). The
case in (e) corresponds to :
Fig. 18b. Using equation (25) we
recover the cosine (g) from (d)
without error (h)




7d. A SAMCELL with Non-Unity Values

As our final example we can consider a case previously studied [3] where samples are
modified, but where no actual information is lost. This example can be expressed in
terms of a SAMCELL that has elements that need not be unity. Specifically for this
example, s=[ 1/2 1] with W=[ 1 1] represents a case where all even indexed samples

are divided by two (Fig. 20).

g Y
B Y
o 111
' ' 5
0 a2z 5 vz Y
t 1]
o 1 2 3

Fig. 20 Every even sample in (a) is set to half its value (b).

Fig. 21 shows the overlap and recovery scheme as a special case of what we have
been doing in this note. In (a) we have a triangular spectrum with bandwidth w=1/2 (full
size). Since no samples will actually be lost (we can recover them by multiplying by 2),
we can expect to support this full bandwidth even though half the samples are modified
(divided by 2). Only two segments (A and B) are needed here. It will be convenient; as
before, to subtract the case where only the even samples (divided by 2) are kept (Fig.
21b) from the case where all samples are kept (Fig. 21a) to get the case where even
samples are divided by 2 (Fig. 21¢). Here we have (by inspection, or using Program 2):

al [34 -14)

b -1/4  3/4
and the inverse of this (ordinary or pseudo-inverse are the same since the matrix in
invertable) is:

A

B

(26a)

A

32 172 ]

a
| - (26b)
\

B 12 312

We éee from Fig. 21d that the recovery is full and correct.
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Fig. 21 An original spectfum is seen in (a). The spectrum of 1/2 times the even samples
is seen in (b) to sum to 1/4. Subtracting (b) from (a) gives the sampled spectrum (c). '
_In {d) we have the full and complete recovery using equation (26b).
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