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ENVELOPE EXTRACTION WITH THE HILBERT TRANSFORM

'INTRODUCTION - BASIC [DEAS

Hilbert transform theory tells us many things that are useful in signal processing,
communications, and sound synthesis [1]. One of these things is that the envelope of a
signal x(t) can be derived from x(t) by first taking the Hilbert transform x(t) and then

computing the envelope e(t) as:
et) = V(1) + (M)

This is pretty simple - just the Pythagorean theorem. Simple, that is, assuming we have the
Hilbert transform of our signal. The Hilbert transform is obtained, not surprismgiy, using a

Hilbert transformer [2].

rig. 1 illustrates a simple Hilbert transformer setup for envelope extraction. Here we
have chosen a length 43 Hilbert transformer designed with Matlab's "firls" function as:

hh = firls(42,[0 0.03 0.1 0.9 0.97 1},[0 0 110 0],'Hilbert’)

This impulse response is listed in Fig. 2, and the magnitude response of this Hilbert
transformer is shown in Fig. 3, and is seen o be a reasonably good approximation to 1 from
about 0.06 to 0.44. The exact details of this design-are not essential to the main theme of

“this note.
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'Fig. 1 Envelope Extraction Using Hilbert Transform
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hh{n)

n “hh(n) n
21 0.0060 1 0.6227
-19 0.0123 3 0.1722
-17 0.0197 5 0.0656
-15 © 0.0263 7 0.0142
13 0.0296 9 -0.0135
-11 0.0265 11 -0.0265
-9 0.0135 13 -0.0296
-7 -0.0142 15 -0.0263
-5 -0.0656 17 -0.0197
-3 -0.1722 19 -0.0123 |
-1 -0 6227 21 -0.0060 all other hh{n)=0
Fig. 2 Impulse Response of Hilbert Transformer
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Fig'. 3 Magnitude Response of Hilbert Transformer (the phase difference is exactly 90°)
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It is of course useful to generate a signal to test that has a known envelope. Fig. 4
shows an envelope that we have generated that can be imposed on 10,000 samples of
another signal. This envelope is of the ADSR form (Attack-Decay-Sustain-Release) that is
popular in music synthesis. We note that the Attack and Decay have 1000 samples each,
the Sustain is 6000 samples long, and the Release is 2000 samples long. Fig. 5 shows this
envelope multiplying a sinusoidal waveform. Indeed it looks like little more than a dark
splotch since the period of the sinusoid is very small relative to the envelope length.

T T T T T T T T T T T

Fig. 4 A typical envelope
of the Attack, Decay,

osr ' y Sustain, Release (ADSR)
D _ type as is often used

in music synthesis can

08
be our test envelope
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Fig. 5 The ADSR is imposed
upon a sinusoidal waveform
of a frequency that is very
high relative to what could

be resolved in this plot. That
is, the sinusoidal waveform is
multiplied point-by-point with
the ADSR envelope
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Fig. 6 shows a particularly successful recovery of the envelope using the Hilbert
transformer as described. (In fact, it is so successful that we will be obliged to come up
with less successful examples just to show that we didn't cheat.} The level of success is
related to how well the Hilbert transformer approximates unity gain (Fig. 3). In producing
Fig. 6, we have chosen a frequency (0.07) such that we achieve a particutarly favorable
case. This we can see by looking at a zoomed-in portion of the magnitude of the Hilbert
transformer, as seen in Fig. 7, where we see that the actual magnitude at the frequency we

are using, 0.07, is very close to 1.
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Fig. 6 Here we have a
virtually perfect recovery of
the ADSR envelope by
using the Hilbert transform
method. The frequency of
the sinusoidal waveform
is 0.07.

Fig. 7 A detail of the

Hilbert transform magnitude
from Fig. 3. Note that the
magnitude at 0.07 and at 0.13
(frequencies we are using for
some of our test) are very close
to one, while at a frequency of
0.06 it is high by more than 1%
and at 0.05 it is low by about 4%
and is on the way down further.




We can also see from Fig. 7 that other frequencies have magnitudes differing from 1,
and for example,the frequency 0.06 has a magnitude that is about 1% high. Fig 8 shows
the case of recovering the envelope if this frequency is used, and we see a mild ripple in the
recovered envelope (seen best at the fop of the attack). We note also that the response
for a frequency of 0.05 is about 4% low, since here we are headed out of the low end of the
usable bandwidth. Fig. 9 shows a case where the first 5000 samples are at a frequency of
0.06 while the last 5000 are at a frequency of 0.05. We note a blurring beyond sample
5000, which is due to the 4% ampilitude error. This is not due to the change of frequency by
itself. Fig. 10 shows a change of frequency from 0.07 to 0.13 at sample 5000, and we note
only the expected transient glitch as the length 43 Hilbert transformer is reloading with the
new frequency. Thus, we expect frequency changes per se to not be a major complication.
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Fig, 10 Changing the frequency at the midpoint, from 0.07 to 0.13 causes a "glitch” as the
Hilbert transformer: is refilled with he new frequency, but otherwise, both frequencies are

well suited to excellent envelope recovery (see Fig. 7)
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Fig. 11 The actual envelope recover'ed (dotted) is slightly delayed relative to the original
envelope (solid) due to the delay of the Hilbert transform.

AN-355 (6)




Another point which is hard to see on comparing Fig. 4 and Fig. 6 is that the recovered
envelope is slightly delayed. In fact, this delay is exactly the delay of 21 from the Hilbert
transform used. Fig.11 perhaps makes this point more clearly by zooming in on a region
~ from samples 700 to 1300, thus including the transition from attack to decay at sample

1000. [In addition to better showing the delay, this view also shows the expected
relationship between the actual sinusoidal waveform and the envelope.]

BUT NOT SO FAST!

Here we do seem to have an excelient example (Fig. 6). Further, the faults we have
shown in subsequent examples are not fundamental, and could likely be reduced sufficiently
by choosing a better Hilbert Transformer. Unfortunately for many applications, there is a
fundamental problem. This has been long noted [3] and involves the case of multiple
frequencies in the input. Does this still work with multiple frequencies? In a word: No. At
least it does not work if we insist that the envelope recovered be the one we impose on the
waveform in the first place, or if our notion of what the envelope is does not fit what the

Hilbert Transform method gives us.

Fig. 12 shows an example where two sinusoidal waveforms of different frequencies, (0 07
and 0.13) are input. These are the same frequencies as in Fig. 10, but here, instead of
switching from one frequency to the other at the midpoint, both frequencies are present for
all 10,000 samples. This is a very different result. instead of a reasonably clean smooth
recovery of the envelope, we see a mess. Although the envelope is still apparent it is our
eye that is recovering it as the top of the plot.

The notion that perhaps the Hilbert Transformer is finding an envelope that is different
from the one imposed is illustrated in Fig. 13. In Fig. 13a we show a case of two
frequencies where the two are here very close together, 0.09 and 0. 091. Itis still fairly
apparent that the original imposed ADSR envelope is having some influence, but for the
most part, the output is dominated by a lobed structure. The origins of the lobes are
immediately apparent by considering the Hilbert transform input (the actual enveloped.
waveform) in Fig. 13b. In fact we well understand the lobes as being produced by the
summation of two close sinusoidal waveforms in a familiar "beating” pattern. It is not at all
unreasonable in this case to consider the actual envelope as being the product of the beat
envelope (that is just due to the summation) which is then subject to the imposed ADSR. In
this case, we believe we have recovered the true envelope, but clearly not the one we
imposed.  But the Hilbert transform method was "honest."

In order to relate Fig. 13a to Fig. 12, it will be useful to move the frequencies a bit further
apart (to 0.09 and 0.094), and we have the recovered envelope shown in Fig. 13c, which is
starting to look like Fig. 12. Of course, it is still beating in the details, and this is seen in Fig. -
13d, which shows a smaller portion of the recovered envelope, along with the corresponding
Hilbert transform pair that produces it. We note how the envelope still hugs the waveform.
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Fig. 12 Here we have two frequencies, 0.07 and 0.13, as in Fig. 10, but they are present
simultaneously for all 10,000 sampies. Clearly our hoped-for envelope recovery (recovery

of the ADSR) has failed.

T Hilbert =~
Recovered
Envelope

g4k -

WAV

S
[} 1000 2000 3000 4000 5{)00 6000 7000 8000 9000 10000

Fig. 13a For two close frequencies, 0.09 and 0.091, the recovered envelope is lobed
- according to the "beat envelope” of the summation, as well as the imposed ADSR. Probably

there |s a very real sense in which this is the "nght answer."
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Fig, 13b The lobed structure found in the envelope of Fig. 13a is cléar]y the resuit of the
actual amplitude beating that is going on.
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Fig. 13c With the frequencies a bit further apart, 0.09 and 0.094, the lobed structure in the
recovered envelope gets more narrowly spaced, and starts to resemble Fig. 12.
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in fact, the waveforms of Fig. 13d remind us of how the method worked with one
frequency component. In Fig. 13e we return fo just one component (0.092) and show the

1.

ut as the on in Fig. 13d for two components. Of course, this is just
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same borﬁon
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13d A blow-up of a
portion of Fig. 13¢ shows the

recovered envelope as the
V-shaped solid line. This

Fi

envelope is recovered from the
original signal (dashed line) and

from its Hilbert transform

(dotted line).
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Fig. 13e Here we are reminded
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Compare to Fig. 13d above.
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ANOTHER PROBLEM — “PINGING WAVEFORMS”

Above we have seen three notions of an envelope: (1) the ADSR test ehvelope we
generated, (2) the envelope the HT method returns, and (3) the envelope we really
thought was the right one. In order to see how to bring these ideas together, or to see
how they may need to remain apart, we need to bring in the human listener, and an
associated scale of time, that is appropriate. This is a common problém when we try to
apply mathematical calculations to the world of human perception. Time scale matters.
Here an example using a “pinging waveform” will be useful. |

In the case of audio event, the applicable time scales would be first the human time
constant (about 50 milliseconds = 1/20 seconds) and second the normal duration of
acoustic "events" of interest. These events would be things like individual musical
- notes, the bark of a dog, a word of speech, or a clap of thunder; events with durations of
perhaps a quarter second or more - long (by an order of magnitude or more) with
respect to the human time constant. In such cases, we are usually interested in
describing how loud some sound is, as a function of time, as it progresses from start to
finish. A conflict appears when the overall event is composed of smaller events (usually
quasi-periodic) each of which seems to have amplitude variations.

Such a case is likely fo appear when we have an excitation and a resonance
(perhaps multiple resonances) involved. lan Fritz was kind enough to suggest this as a
challenging task for any envelope follower scheme. We will begin with an example
where our main goal is to illustrate the concept with clear figures, although the time
' scales may not be realistic. ~ Fig. 14a shows a waveform generated by pulses that are
250 samples apart which excite a digital resonator (high-Q digital filter) which is 2™

order with complex poles at a radius of 0.98 and angles +20°, which is then enveloped
by the ADSR of Fig. 4. A zoomed-in portion is seen in Fig.- 14b Fig. 14c shows the
_recovered Hilbert envelope, with Fig. 14d showing a zoom-in of this. Essentially we see
that we have recovered the envelopes of the individual “pings” corresponding to the

- excitation pulses. We did not get the ADSR back. : '

At this point we note that the spacing of the excitation pulses (and the recovered
envelopes of Fig. 14c¢) is pitch related, and not event related. For clarity of plotting, we
have shown relatively few (actually 40) pings inside the ADSR envelope. We are to
understand that the pings are not heard individually, but rather as a contribution to
musical timbre (tone color) of the sound. The “event” is the full 10000 samples
corresponding to the ADSR iength. The Hilbert transform method has given us the

~ wrong envelope(s) ; at least, not the ADSR.

AN-355 (11)




enveloped
- T - P T T T

(L “Pinging” Signal ]

| enveloped with ADSR
05 —. .
oF 4
05 J

1 I 1 oI
0 1000 2000 3000 - 4000 5000 6000 70OO 8000 9000 10000

Fig. 14a Here a waveform is generated by pulses spaced 250 samples apart which |
excite a resonator causing ringing or “pings.” The waveform has been enveloped with

the ADSR of Fig. 4.

zoom-in of enveloped )
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Fig. 14b Here we have a detail (zoom-in) from Fig. 14a and we can better see the
details (exponentially decaying sinusoids) of the individual pings.

AN-355 (12)




Hilbert recovered envelope
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Fig. 14c The Hilbert transform method rec_over$ the envelope of Fig. 14a. Note that we
get the envelopes of the individual pings, not the ADSR we might have been hoping for.

zeom-in of recovered envelope
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Fig. 14d A detail of Fig. 14c. Compare to Fig. 14b.
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LOW-PASS AVERAGING OF THE ENTIRE EVENT

We were hoping for a robust envelope detector that would not force us to employ
low-pass averagmg with its associated delays and blurring of components that should
be sharply defined in time. Also, the Hilbert transformer approach was computationally
intense. Thus since the Hilbert transform approach did not solve the problem, and
since we apparently still will need low-pass averaging, should we bother with the Hilbert
tfransformer? - After all, we could just rectify the original signal and low-pass, a very
standard method of enveIOpe recovery. Fig. 15a shows the original signa! of Fig. 14a
~ rectified (full-wave rectified or “absolute value™). Fig. 15b is a zoom-in of Fig. 15a. Note
the striking similarity of Fig. 14c and Fig. 15a, and in their more detailed versions (Fig.
14d and Fig. 15b). Also note the differences. Fig. 14d shows the envelopes of the
component pings while Fig. 15b shows the rectified pings themselves.

Now, the questlon at hand re!ates to the addition of low-pass averaging. Intuitively
we might expect better results by low-passing the component envelopes (Fig. 14c)
rather than the rectified signal (Fig. 15a). However a small amount of thought will also
suggest that in this case we may not see much advantage, as anything capable of low-
passing the pings is certainly capable of low-passing the cycles within the pings
themselves.

- Accordingly,Fig. 16a and Fig. 16b show nearly identical results. Both are fairly ugly-
looking.in fact. But note that this ugliness is not “noise” but the actual pings that are not
sufficiently filtered which cause spiking in the envelope. This is really a consequence of
our wanting to plot the details of the pinging clearly. Later we will look at a more
realistic case where the pings are denser.

What we seem to learn is that the use of the Hilbert transform to recover the
component ping envelopes is likely not worth the effort, relative to the simple application
- of a fuil-wave rectifier. And as lan suggested, this is a fairly tough envelope to coax out

of the signal.-

ANOTHER LOOK AT MULTIPLE FREQUENCIES —
HARMONICS IN THIS CASE

We were initially delighted with the envelope recovery in the case of a single
frequency (e.g., Fig. 6), and disappointed to see a mess for multiple frequencies (e.g.,
Fig. 12). Why does it now work for the sum? Because it is non-linear of course (the
squaring and square roots)! Yet we still think we can “see” the envelope in Fig. 12, and
~ we have our low-pass averaging to use as we have seen above.

AN-355 (14)
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Fig. 15a Absolute value (full-wave rectification) of original signal.
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F_ig. 15b A detail from Fig. 15a shows the rectified pings. -
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- low-pass of Hibert envelope
003 ~r— T T T

_ Low-Pass of
0025} ‘ | Hilbert Envelope

002F
00155 -
001k

0005

0 4 . , . L L . ',-'x..\_-, |
2000 0 20000 4000 6000 - 8000 10000 12000

Fig. 16a Low-pass filtering of the Hilbert transform envelope(s) of Fig. 14c. .The'digital
fow-pass is a length 521 FIR filter with cutoff of 0.00015.
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Fig. 16b Low-pass filtering of the absolute value of the original signa.l ('Fig“ 16b). The
digital low-pass is again a length 521 FIR filter with cutqff of 0.00015. ,
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Fig. 17a shows an enveloped waveform consisting of four harmonics (0.06, 0.12,
0.18, and 0.24), and a zoom-in is shown on Fig. 17b. Fig. 17¢ shows the Hilbert
envelope (zoomed in Fig. 17d). Compare this to Fig. 17e which is the full-wave rectified
signal (zoomed in Fig. 17f). Low-passed versions of Fig. 17¢ and Fig. 17e are shown in
Fig. 18a and fig. 18b respectively. Here the low-pass cutoff was set to about 0. 0075,
and the results are quite good, and we might well say, equally good. Accordingly we
probably would reject the Hilbert transform approach in favor of the much simple full-

wave rectifier.

Just below we want to take another look at the resonator case. For the moment we
need to caution that we must not make final judgments based on a comparison of Fig.
18a and Fig. 18b (good) with Fig. 16a and Fig. 16b (kind of ugly). The reason is that
the low-pass filters in the two cases are quite different. The cutoff for Fig. 16a and Fig.
16b is about 0.00015, as compared to 0.0075 (50 times higher) for Fig. 18a and Fig.
18b. In Fig. 16a and Fig. 16b, we had tfo set the cutoff very low so as to low-pass the
pings. Yet we did not succeed totally in doing this (hence the spikes). If we had made
the cutoff even lower, we might have gotten rid of most of the spikes, at the expense of

blurring the whole envelope into one blob.

ANOTHER LOOK AT THE RESONATOR

- 'We have just mentioned we intend to look at the resonator in a more fair-minded
manner. This we do at the expense of producing figures that do not demonstrate the
pinging of the resonator so well. Yet this will show several interesting results.

For Fig: 19a, we again have a waveform produced by inputting pulsés into a
resonator and imposing an ADSR envelope. Indeed this already looks strange because
the negative portions are only about half the amplitude of the positive sides. Why is

this?

What we have done here is first to increase the pulse density of the excitations by
reducing their spacing from 250 to just 25. At the same time, we have reduced the
radius of the resonator poles from 0.98 to 0.90. This means that the resonator is of a
much lower Q and does not ring as much. The inset of Fig, 19a shows the impulse
response of the resonator. (Compare to Fig. 14b.) Note that the positive excursion is
much greater than the negative excursion due to the increased damping. Since Fig.
19a is made up of 400 of these rings, we understand the favoring of positive amplitudes-
relative to negative ones. Fig. 19b is a zoom-in of Fig. 19a, and we notice this
imbalance, and the fact that the excitations are dense enough that ringings are not
completed before new excitations are started. Of course, it is always true that the
ringings are not complete (they are exponential), but here, we see it clearly (again

~ compare to Fig. 14b).

AN-355 (17)




enveloped
O T

Signal with Multiple Harmonics
Enveloped with ADSR

0.5+

05F

1

Il e | | A ; 1 1 L 1 I 1 . I-
0 1000 2000 3000- 4000 5000 ASDOO' 7000 8000 9000  §QO000

Fig.17a A signal consisting.of four harmonics with an imposed ADSR.
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Fig. 17b A zoom-in of Fig. 17a

AN-355 (18)




Hilbert recovered env'élope
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Fig. 17c The Hilbert recovered envelope of Fig. 17a
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Fig. 17d A zoom-in of Fig. 17¢
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Fig. 17e The absolute value of Fig. 17a
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Fig. 17f A zoom-in of Fig. 17e
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low-pass of Hilbert envelope
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s _ “Pinging” with Faster Excitation and .
' Lower Q, Enveloped with ADSR :
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Fig. 19a Pulses into a resonator. Here the spacing of excitation pulses is 25 samples.
The resonator’s impulse response is shown in the inset.
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'Fig. 19b Zoom-in of Fig. 19a. Note that new excitation pulses arrive before the
resonators impulse response (inset of Fig. 19a) becomes small.
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Fig. 19¢ Zoom-in- g_f Hllbert recovered envelope for waveform of F|g 19a Note that

the method seems to be struggling between recovering the envelopes of the component
“pings” (about 31 here) and the general frend of the ADSR (a “dc” level from about 0.5

to 0.1 from left to right.
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Fig. 19d Zoom-in of absolute value of the waveform of Fig. 19a. Note the unequal lobe |
sizes due to the differences of positive and negative ring lobes. ,
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low-pass of Hilbert envelope
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Fig. 19e Low-pass- averaging of thé recovered Hilberf envelope frorh Fig. 19a (cutoff
0.0075). ' .
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" Fig. 19f Low-pass averaging of absolute value of Fig. 19a (cutoff 0.0075).
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- Fig,-19¢ shows a zoom-in of the recovered Hilbert envelope while Fig. 19d shows the
corresponding zoom-in of the absolute value of the signal. This result is quite revealing
in that there is a noticeable difference between these two. Above we noticed that the
Hilbert transform method could recover an “event” envelope (the ADSR) for a smgle
frequency, but tended to recover the envelope of beat cycles,or component pings in
other cases. Here (Fig. 190) we may have trapped it in an ambiguous case. We do see
the envelopes of the component pings (31 from left to right) but also a falling dc level
from about 0.5 to 0.1 going left to right. This we can attribute to having made the
distance between excitation pulses small relative to what we would normally think of as

the durat[on of the resonator ringing.

In contrast, Fig. 19d is just the absolute value. Normally, taking an absolute value
reduces the residual ripple that remains after low-pass filtering. (After all, this is why it
is easier to build a power supply with a full-wave rather than with a half-wave rectifier.)
In Fig. 19d, we see the large positive peaks (0.8 on the left side), but the negative peaks
(as rectified) are only about 0.3 (again, on the left). In some sense, this result
resembles a half-wave rectification more than a full wave one (compare to Fig. 15b).
Intuitively, we would expect Fig. 19¢ to be somewhat easier to low-pass filter that Fig.

19d. .

Flg 19e shows the low-pass averaging for the Hilbert envelope case and Fig. 19f
shows the low-pass averaging for the absoluté value case. The quality of the envelope
recovery looks similar in both these plots. In fact, if we look closely we see that there is
slightly more residual rippie in the absolute value case (this can probably be seen best
- at the very peak of the envelopes). An analysis of the details of the data (not just the
plots) shows that for the Hilbert envelope case, the residual npple is about 1.2% while
for the absolute value case, it is about 1.9%.

~ CONCLUSIONS

We see that it is possible, by proper choice of low-pass averaging; to reasonably
recover the envelope from the absolute value, much as we have always supposed, or
actually done. Further, in the case of single frequencies, we can use the Hitbert
transform approach without any low-pass averaging. In the case of multiple frequencies
(which actually includes the resonator case) we may find interesting results using the
Hilbert transform approach. Combining the Hilbert transform approach with low-pass
averaging, we may find results that are better than low-pass averaging of the absolute
value. ‘But the improvement may be marginal (1.2% rather than 1. 9% in our example) at
considerable computattonal costs from a practical point of view.
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