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A NOTE ON THE GAIN AND TIME CONSTANT OF INTEGRATORS

Few analog circuits are as frequently used as the inverting integrator (Fig. 1) which finds
wide application in signal processing and in many other circuit schemes. Treating the op-
amp as ideal, we find that the transfer function of the integrator is:

Ti(s) =-1/sRC 1)

This is an integrator (the 1/s), which is inverting (the - sign), and which is said to have a
time-constant of RC. It has a pole at s=0, and provides a phase shift of 90°. Note that the
magnitude of the frequency response is;

[Tis)| = 1/QRC | , (2)

which falls off as the reciprocal of frequency. On a log-log plot, this is a 45° angle (Fig. 2).
Note that the DC gain is infinite! In fact, the integrator by itself (undamped, or not a part of a
loop — such as in a state-variable filter) is unstable. 1t is further significant that the integrator
has no separable notions of “gain” and “time-constant.” This we can see by assuming that
a gain « is imposed on the integrator. In such a case, we see that the gain ¢an be thought
of as a change of time-constant by a factor of 1/a.

T. (8) = -a/sRC = ~1/s{(RC/c) (3)
Another way of seeing this is that the 45° slope on the log-log plot can be moved up or down

(change of gain) or left or right (change of time constant) to the same effect (Fig. 2).
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Is there anything strange here? Yes - in general the gain of a network is separated from
its frequency properties.  For example, the closely related first-order low-pass filter of Fig 3
(also a damped integrator) has transfer function:

Twe(s) = (R/N/(1+ sRC) : | (4)

This network has a pole at -1/RC, and accordingly a 3db low-pass cutoff frequency of
Q=1/RC. Thatis, at DC the network has a magnitude R/, and at Q=1/RC it has a gain of
(RINAR. If we impose a gain change o on this network, at DC the gain is aR/fr and at
Q=1/RC, itis (aR/r)/N2. Thatis, the cutoff frequency is independent of gain (Fig. 4). The
curve just moves up or down. Further, if we do change the RC product, the curve moves left
or right. The difference is seen to be the lack of a “kink in the curve” in the case of the
integrator. We can't tell how the integrator curve moves because there is no “marker” on it.
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Fig. 3 Simple Low-Pass Fig. 4 Low-Pass Responses

Another way to look at this is to consider the number of free parameters we have in the
two circuits, In the case of the integrator, there is only the RC product. We only get to
- choose one thing - the product. (It does not matter for example if we choose R=100k and
C=0.01 microfarads or R=10k and C=0.1 microfarads, the product is a millisecond.) in the
case of the low-pass filter, we choose two things, the RC time ¢onstant (the cutoff
frequency) and we also get to control the gain ratio (R/r).

We often suppose that we can define a filter by relating the positions of all the poles and
zeros of the network. If we know that a filter has L zeros z4, Z, ... 2. and M poles p1, pa, ..
Pwm, we might suppose that the transfer function must be: : '

T(s} = [ (5-24)(8-22).. (8-20) 1/ [(8-P1)(S-P2) . (5-Pw) ] ®)

and this is almost right. The reason it is not exactly right is because we can apply an
arbitrary mulitiplicative constant to equation (5), (an arbitrary constant gain), and we have the
exact same poles and zeros. So the poles/zeros define the transfer function only up to an
“arbitrary multiplicative factor. Is this important? Only when we forgetit. Many times we do
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get to adjust the gain to a desired value with no additional consequences for a particular
application. But at other times, we can get bit.

Here is why this may concern us in the case of the integrator. Above we talked about an
ideal op-amp integrator. We know that many times we need to worry about integrators
made with real, non-ideal op-amps [1]. In particular, when we acknowledge the realness of
the op-amp, the integrator has a second pole. We still have the pole at s=0, but there is a
second pole, that is ofien negligibly far away (on the negative real axis). In cases where we
need to worry about this pole, we may attempt to cancel it by putting a zero right on top of it
[2]. In as much as we can suppose that we can cancel this second pole exactly (in practice
we get approximate cancellation), we have only the one pole at s=0. Do we have our ideal
integrator? No. Afleast — don't count on it!

If we wanted a network (an integrator) with only one pole, at s=0, and this is what we got,
how could we have the wrong result? Because as we just said, the poles/zeros only give
the network to within a multiplicative constant. In the pole cancellation scheme, we may
have changed the gain of the integrator. Equivalently, we may have changed the time
constant. Our scheme for creating a zero that cancels the extra pole may well have
changed the gain.

We have frequently noted that many active filter networks have embedded integrators.
These obviously include such filter configurations as the state-variable and active flow-graph
3], but also such networks as the multiple feedback infinite gain low-pass [4]. When we
propose to "just fix the integrators” we need to be careful to see if we are just changing the
gain (the time constant) slightly (changing the frequency slightly), or if we are changing the
fiter's characteristic.
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