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PHASE ERRORS, AMPLITUDE ERRORS, AND
UNWANTED SIDEBANDS IN FREQUENCY SHIFTERS

INTRODUCTION

The more or less standard frequency shifter design [1] used in audio works is
essentially the same structure as the single-sideband modulator used in communications.
The device is based on the production of quadrature phases of two signals: a program
sighal and a shifting signal (Fig. 1). The multipliers are essentially "balanced moduiators”
which are double sideband devices. By taking the sum and differences of the mulitiplier
outputs, the upper and lower sidebands are separated. This is clearly shown by the trig
functions written over Fig. 1. Note however that the exact result shown depends on
having quadrature pairs that are exact: exactly 90° out of phase, and which have the

exact same amplitude.
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Fig. 1 Standard Frequency Shifter
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In practice, it is seldom the case that exact quadrature is obtained. in cases where
signals to be processed are of diverse variety, and generally broadbanded, the devices
which separates the signals into quadrature components usually have well-specified but
limited capabilities. Perhaps surprisingly, it is the usual case that one or the other of
phase, or amplitude, is actually very near to being perfect by default. in an analog
context, the phase splitters can be formed from all-pass networks with flat amplitude over
very wide ranges of frequency. The 90° difference however is approximated by the
difference of two all-pass cascades which have phase responses staggered with respect
to each other. These are usually called 20° phase differencing networks (PDN), and they
approximate a 90° phase difference to within defined tolerances over specified bands.

In the discrete-time case however, the 90° phase difference is easily made to be
perfect, (by odd symmetry in an FIR digital filter) and it is the amplitude response that is
not flat, being only an approximation to a constant over a range of frequency. These
networks are usually called Hilbert transformers (HT) [2]. Figure 2 summarizes the two

cases.

[It should perhaps be mentioned before going on that in cases where a signal involved in
the frequency shifter is not broadbanded, but rather is perhaps just a single frequency,
achieving a perfect quadrature pair may be both trivial and cheap. Single all-pass
sections, pure delays, and oscillators with multiple phase outputs are among the options
when a broadbanded 90° PND or HT is not required.]

CALCULATING THE UNWANTED SIDEBAND

Since in the general case we expect amplitude errors, phase errors, or possibly both in
our broadband phase shifter networks, it is the purpose of this note to discuss how one
calculates the degraded performance in terms of the amount of unwanted sideband that
corrupts the wanted sideband. This we accomplish easily by assuming specific errors
and overwriting our basic diagram with the revised trig calculations. The theoretical
equations are then easily verified by calculations of test cases using Fast Fourier

Transforms.

The easiest of the errors to analyze is the amplitude error, and this is shown in Fig. 3.
Here the frequency shifter for the program channel is assumed to have a different
amplitude (A) for the sine output, as opposed to an amplitude of 1 for the cosine. In
general, we expect A to be a function of frequency - not a fixed constant. So the worse-
case amplitude error might be used to find the worse case of unwanted sideband. It is

easy to calculate that the downshifted output is:
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Fig. 2 A 90° PDN (a)is comprased of a series connection of analog all-pass networks (flat
frequency response magnitude as in b) staggered so that a phase difference of 90° is

- maintained to within some tolerance & over a suitable range (c). The Hilbert transform
approach (d) approximates a unity gain (e), but the phase response is exactly 90° (f).
Thus the analog approach has a "perfect” magnitude respense whlle the d:gltal

approach has a "perfec " phase response.
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Fig. 3 Frequency Shifter with Amplitude Error

d(t) = (A2 + 1/2)cos[(wp-wsit] - (A/2 - 1/2)cos[(wp+ws)t] (M)

from which we note that the ratio of the unwanted sideband (the sum frequency) fo the
desired sideband (the difference frequency) is:

ug = (A-1Y(A+1) (2)

This is the sort of error we expect with a digital filter approach.

In a second case, we want to look at a phase error (Fig. 4) where we assume the sine
output of the program signal is not a pure sine, but rather has an additional phase 0. As
was the case with amplitude, d is fikely a function of frequency, and again, we look for
worse-case errors. In fact, we have noted that such phase error is likely to be found in
an analog PDN, and most PDN design procedures yield a performance specification
giving the maximum expected phase error. In Fig. 4, the two components of the
downshift d(t) that correspond to the difference frequency are:

ds(t) =(172)cos[(wp-ws)t + 8] + (1/2)cos[(wp-ws )]

= ¢os(0/2)cos{( wp-ws)t + /2] (3a)
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Fig. 4 Frequency Shifter with Phase Error

where we have use the trig identity for the sum of cosines. A very similar calculation
gives the sum frequency (unwanted sideband) at d(t) as:

daft) =(1/2)cos{(wptws)t] - (1/2)cos[(wptws)t +0]
= sin(&/2)sin[{wp+ws)t + 0/2] (3b)
and then
d(t) = dy(t) + da(t) 4)
Note that the angle /2 appears in four places in d(f). The phase shifts &/2 in the cosine
and sine that are time varying are not of much interest. But the cos(5/2) and sin(d/2) that

determine the amplitudes are exactly what we need to use. We see that the ratio of
undesired sideband (upshift) to desired (downshift) is:

Uz = sin(8/2)/cos(8/2) = tan(d/2) (5)

which is the measure used for analog shifters [1].
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Although we have noted that many applications will have only one of the two errors
(amplitude or phase), it is not overly difficult to calculate the unwanted sideband ratio for
the case where both errors occur. This is seen in Fig. 5. At the downshift output, the

downshifted component is represented by:

dq(t) = (A72)cosf(wy-ws)t + 8] + (1/2)cos[(wp-ws)t]

(6)

which is not something we can sum with the sum of cosine trig identity. But we can
rearrange it and use equation (3a) to get:

dy(t) = [(A-1)/2]cos{(we-ws)t + 8] + (1/2)cos[{wp-ws)t+8]+ (1/2)cos[(wp-ws)t]

= [(A-1)/2]cos[(wy-ws)t + 8] + cos(B/2)cos](wp-we)t + 8/2]

)

We note that d4(t) consists of two cosines at the difference frequency, with amplitudes
a=(A-1)/2 and b=cos(d/2) which have a phase difference of 5/2. The amplitude of the

sum is thus obtained by the "law of cosines” as:

r;=[a%+b*-

2ab cos(m-6/2) ] ¥
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At the downshifted output, the upshifted component is given by (qlso using equation 3b):
da(t) = (1/2)cos[(wptws)t] - (A/2)cos[(wptws)}i+3]
= (1/72)[( wptws)t] - (1/2)cos[(wetws)t+d] - [(A-1)/2]cos[(wp+ws)t + O]
= sin(d/2)sin[(wp+ws)t + 8/2] - [(A-1)/2]ces](wptws)t + D] (9)

Here we have a sine and a cosine with added phase 3. Now taking c=sin(8/2) as the
amplitude of the sine component and b=(A-1)/2 as before, again using the law of cosines:

rz = [ ¢ + b - 2¢b cos(T/2 + 8/2)] # (10)
Finally, this yields the undesired sideband ratio for both errors as:
Uz = rofry {11)

These same equations derived here for the downsampled output also apply to the
upsampled output.

A TEST PROGRAM

We find it useful to write a Matiab program for several purposes: to evaluate the
various equations above, to simulate the frequency shifter, and to plot some example
figures. The program below does these things. We can think of the simulation as an
"experimental" verification of our theoretical calcutations above. The program takes as
input an amplitude error A and a phase error del. If A=1 and del=0 we have the no error
case. A value of A of 1.1 would be an example of an amplitude error and a value of del of
0.05 (meaning radians) would be a phase error.

The program first generates portions of the sequences representing the outputs of the
phase splitters, and these are multiplied and added (downshift). The FFT is then taken of
the output sequence, and the magnitude for the upshift (unwanted) sideband frequency is
divided by the magnitude of the downshift (desired) sideband frequency. For this test, the
program frequency is taken to be 50 while the shift frequency is taken to be 20, so the
downshift is 30 while the upshift is 70. The experimental value for the unwanted sideband
is u. This we compare with values of u1, u2, and u3 which are calculated from A and del.
The value u3 always agrees with u, while u1 agrees with u when there is only an
amplitude error, and u2 agrees with u when there is only a phase error. Thus the derived

equations are verified.

The program also plots example waveforms. Fig. 6 shows plots for a no-gfror case,
while Fig. 7 shows a case where A=1.1 and del=0.1 (about 6 degrees).
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function [u,ut,u2,u3]=usb(A,del)

% function [u,u1,u2,u3j=usb{A,del)

% unwanted upper sideband of frequency shifter
%

% A = amplitude relative to 1

% del = phase error (radians)

%

% u = unwanted "experimental”

% u1 = calculated based on amplitude error only
% u2 = calculated based on phase error only

% u3 = calculated total error
% B. Hutchins Fali 2001
n=0:599;

% program signals
xps=A*sin(2*pi*50*n/600 + del);
xpc=cos(2*pi*50*n/600);

% shifting signals
xss=sin(2*pi*20*n/600);
xsc=cos(2*pi*20™n/600);

% multipliers

ms=xps.*xss;

mCc=xpc.*xsc;

% downshift is sum

down=ms+mc;

up=-ms-+mc;

n=0:50

figure(1)
subplot(221)
plot(n,xps(1:51)}
‘axis([-5 65 -1.2 1.2));
title('program sineg")
subplot(222)
plot(n,xpc(1:51))
axis([-5 55 -1.2 1.2]);
title('program cosine’)
subplot(223)
plot{n,xss(1:51))
axis([-5 55 -1.2 1.2]);
title('shift sine'}
subplot(224)
plot(n,xsc(1:51))
axis({-5 55 -1.2 1.2});
title('shift cosine")
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figure(2)
subplot(221)
piot{n,ms(1:51))
axis{[-6 55 -1.2 1.2]);
title('multiply sines’)
subplot(222)
plot(n,mc(1:51))
axis([-5 55 -1.2 1.2));
title('multiply cosines")
subplot(223)
plot(n,down(1:51))
axis([-5 55 -1.2 1.2));
title("downshift’)
subplot(224)
plot(n,up(1:51))
axis([-5 55 -1.2 1.2));
tittle('upshift')

D=abs(fft(down))/300;

figure(3)

stem(j0:1:100],D(1:101))

axis([-5 105 -.2 1.2));

% “experimental”

u=D(71)/D(31)

% calculated due to amplitude error
u1=abs({(A-1)/(A+1))

% calculated due to phase error
u2=tan(del/2)

a=cos{del/2);

b=(A-1)/2;
ris=a*2+b*2-2*a*b*cos(pi-del/2);
r1=sqrt(ris);

c=sin(dei/2);
r2s=ch2+b*2-2*c*b*cos(pif2+del/2),
re=sqri{r2s);

% calculated due to total error
u3=r2/r1

figure(3)




Fig. 6 Here we see the results
of running the Matlab program
for no errors (A=1, del=0).
The program frequency is 50
while the shift frequency is 20.
The eight relevant waveforms
are shown. At the bottom, the
magnitude FFT of downshift
sequence shows the perfect
downshift at a frequency of
30.

program sine

program cesine
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Fig. 7 Here A=1.1 and del =
0.1 (about 8°). We see
waveforms that are fairly
similar to those in Fig. 8,
although there are slight
differences that are
apparent even in the

time domain. In particular,
there are some unusual
"bending"” in the upshifted
and downshifted waveforms.
The FFT shows the down-
shift as expected (at 30) but
also a small upshifted
component at 70. The
unwanted sideband ratio

is 0.0691. With only the
amplitude error, or only the
phase error, the ratios are
0.0476 and 0.0500
respectively




TRYING IT WITH +45 DEGREES

Something that is sometimes tried, which looks like an astounaing!y good idea at first,
is to try to get a 90° degree phase difference by using filters giving +45° degrees and -45°
degrees instead of 0° degrees and 90° degrees. The thought is that the shifters that give
+45° and -45° degrees of shift have identical amplitude responses, which is true. This
means that there is no error due to amplitude error.

The problem comes up in thinking that the phases of exactly +45° or -45° degrees can
come about by mixing exactly 0° degrees (center tap) and exactly 90° degrees (Hilbert
transformer) each weighted by 1/2"#(Fig. 8). This would occur only if A = 1 of course, in
which case we would already have a perfect Hilbert transformer. But is there perhaps

some improvement at least? [t seems not.

ANZ |
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Hilbert Transformer _|

ANZ

Fig. 8 Attempting to get Good Quadrature with +45 Degrees!

' From Fig. 8 we note that the angle © is tan™'A, not exactly 45 degrees. That s, the
non-unity amplitude A (which is also a function of frequency) now causes a phase error.
It's not going to'let us win. In fact, the phase error (difference from 90 degrees) is:

5 =2(m/4 -tan'A) (12)
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and we know from equation (5) that this phase error results in an unwanted sideband of:
ug = tan(d/2) = tan(1r/4 - tan™'A) (13)
Using the trig identity for the tangent of a difference we get:
ug = [tan(1/4) - tan(tan™A)] 7 [1 + tan(r/4)tan(tan'A)] = (1-A)/(1+A) (14)

This is just equation (2) coming back to us. So we see that the amplitude error A, through
creating a phase error, gives us gxactly the same unwanted sideband that we would have

‘had with the original amplitude error,
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