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CONTRASTING SINEWAVE GENERATION
IN THE ANALOG AND DIGITAL CASES

OBTAINING SINUSOIDAL WAVEFORMS

Nothing is more fundamental to true (non-sampling) music sound synthesis
than oscillators. Very early electronic music studios had banks of sinewave
oscillators in an additive arrangement. The so-called "subtractive" or voltage-
controlled synthesis techniques pioneered by Robert Moog and others used
oscillators that produced more complex waveforms that were then filtered down
(subtracted) to produce desired, time varying spectra. Digital synthesis often
involves digital sinewave oscillators which can be both trivial and subtle.

Probably the most familiar oscillator visible in everyday life is the pendulum
(Fig. 1). A pendulum swings back and forth periodically. It is a familiar problem
in elementary physics to show that the motion is the solution to a second-order
differential equation. (Even this simple system requires an interesting
approximation). The pendulum (or better still, a mass and spring system)
provides sinusoidal or "simple harmonic motion."

But, we may well protest, a pendulum does not keep oscillating. It slows down
and then eventually stops. That is, unless you supply additional energy at
appropriate times. This is because there is friction in real cases and this
dissipates energy. The oscillator is kept going by making up for the lost energy,
usually by replacing the energy lost once each cycle. This is how a pendulum
clock is kept going, by providing energy from a wound spring, the potential
energy of a weight, or perhaps a battery. It is the same way that a child on a
swing is kept contented by a gentle push upon each return to the parent.

Accordingly, obtaining sinusoidal waveforms as the natural response of
second-order systems (supplied with a little extra energy) offers a relatively simple
approach for both analog and digital synthesis. Surprisingly, this is very seldom
used in analog synthesis, and only sparingly in digital synthesis. One reason for
this in the analog case is the problem of obtaining a stable oscillation. Another is
that the sine wave, used by itself rather than in combinations of different
frequencies, is not a particularly useful musical waveform (lacking harmonics, it
doesn't have anything to filter, and is somewhat flute-like by itself). A third
reason is that a sinewave is extremely difficult to waveshape into either a
sawtooth or a triangle (a square wave is trivially obtained with a comparator).
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Fig. 1 A Simple Pendulum as a
Simple Harmonic Oscillator
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Fig. 2 Sawtooth and Triangle Obtained from Samps



More common is a "computational" approach. Here time advances and we
compute the waveform as a function of time. In analog synthesis however, it is
not the usual practice to compute sinusoidal functions of advancing time.
Instead, we compute linear functions of advancing time - voltage proportional to
time itself. These are ramps. Linear ramps are generated by driving constant
currents into capacitors. Ramps are nice; but they run off scale and are not
periodic. To make them periodic, they must either be reset when they try to
exceed a certain limit (a sawtooth based oscillator), or turned around when they
try to exceed certain amplitude limits (a triangle based oscillator)(Fig. 2). The
triangle and sawtooth waveforms are fairly easily shaped, either one into the
other. A square wave is obtained from either the saw or the triangle, and a
sinewave approximation is obtained by shaping the triangle with a non-linear
device (Fig. 3).

NETWORKS AND COMPLEX PLANES

While a pendulum or similar mechanical device provides a very useful intuitive
grasp of analog sinewave oscillators, we need to get somewhat closer to
electronic versions of these oscillators. There are a good number of analog
sinewave oscillator networks (circuits), but few are used in synthesizers. Perhaps
the closest circuit that is commonly found in a synthesizer that resembles a
sinewave oscillator is a state-variable filter. Fortuitously, this same network also
models the generic form of a sinewave oscillator. Fig. 4A shows an
interconnection of two analog integrators and a summer, which many will
recognize as a state-variable filter (the exact arrangement and notation has been
changed slightly to better emphasize the strong resemblance to a second order
digital network).

The particular input/output arrangement shown is for a bandpass response.
The transfer function is:

TB(s) = VB(s)/Vin(s) = s / [s2 + (1/Q)S + 1] (1)

From this, it is clear that if Q -><x>the poles of the network will occur when:

s2 + 1 = 0 (2)

which has solutions s = ±j, that is, poles on the jo-axis (Fig. 4B), and accordingly,
a sinewave oscillator results. In an ideal case, making this network oscillate
would seem to be just a matter of removing the middle feedback link (-1/Q).
Accordingly, when this link is non-zero, it is seen to provide damping.
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{ Persons familiar with analog VCF's are perhaps familiar with the Q of some
early versions of the state-variable filter (multi-mode) going to infinity at high
frequencies, resulting in filter oscillation (although not with a waveform as nice as
a sine wave). In an ordinary, non-voltage controlled state-variable filter, pulling
out the 1/Q path generally did not result in instability, but just a very high-Q filter.
With the control elements in there (usually an OTA of the CA3080 type), there was
enough additional phase shift to de-stabilize the filter, and this phase shift
increases with higher frequencies. This is why you will often see small capacitors,
say about 10 pf, across the input resistors to these control stages (Fig. 5). This
adds a zeros to the loop which compensates for the excess phase. Reference
[1]}

The digital oscillator network [2,3] shown in Fig. 4C is drawn pretty much as a
standard second-order digital filter with two feedbacks. It resembles the analog
oscillator quite closely. Here we have two delays and a summer. Note that the
feedback from the bottom of both networks is a -1. For the analog sinewave
oscillator, the upper feedback is -1/Q=0 while for the digital oscillator, it is
Ai=2 cos(anT) where cop is the desired frequency of oscillation and T = 1/fs is the
sampling period, with fs being the sampling frequency. This network has a
transfer function:

H(z) = z'1 / (1 - A-iz'1 - A0z-2) (3)

which has poles (for the complex conjugate case of interest) at:

Zp1,Zp2 = Al/2±j(-Ai2-4A0)
1/2/2 (4)

which, for A0=-1, are easily seen to be at:

zp1,zp2 = cos(onT) ± jsin(Q0T) (5)

So the poles are on the unit circle at an angle corresponding to the desired
oscillation frequency (Fig 4D). For example, if the sampling frequency is 8000 Hz
and the poles are at an angle of 45° with respect to the positive real axis, the
frequency of oscillation (in Hz) would be 1000.

A CONUNDRUM ?

As mentioned, it is extremely difficult, with analog components, to put poles
exactly on the jtD-axis and keep them there. With the digital sinewave oscillator,
we need to put poles exactly on the unit circle and keep them there. Is this
possible?
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Well, keeping them there is not a problem, as there is no drift of any sort
associated with numbers. Further, equation (5), coming from equation (3) with
Ao=-1 seems to indicate that the pole radius is exactly one. Thus we understand
the successful oscillation as a consequence of being able to set the bottom
multiplier, AQ, to exactly -1.

Now for the problem. While it is possible to multiply by -1 with no roundoff
(changing a sign bit), it is not possible to multiply by the general values of the
coefficient AI without roundoff. While it seems that A^ only changes the
frequency of oscillation, and has nothing to do with whether the oscillation is
stable, we need to note that the roundoff error following A-j is summed with the
feedback through An and is then placed in the top of the delay line. How does the
oscillator "know" that the roundoff came from the AI multiplier and not from the
Ag multiplier!

Clearly, the oscillator does not "know" so we are led to suppose that somehow,
the roundoff must average out. But, this is probably not a correct view, since we
have the empirical result that these oscillators always work, and we would expect
averaging to be inexact in at least some cases. It would seem that some type of
subtle negative feedback is operating here.

COUPLED FORM DIGITAL OSCILLATOR

So it might seem that digital sinewave oscillators just "decide" to work despite
some questions about roundoff. But, if we next consider the so-called "coupled
form" for the digital oscillator (Fig. 6), we find this refusing to work. Realized with
floating point arithmetic, it either dies or blows up. This we can understand in
terms of our inability to put the poles exactly on the unit circle [specifying cos(O)
and sin{9)] with a finite number of bits. Realized with fixed point arithmetic for
the signal, we find to our surprise that the oscillator may stabilize, but not with an
amplitude corresponding to the initial state. Not untypically, it may decay to only
10% of the initial amplitude before locking on. All of this suggests a limit-cycle
behavior [4].

COMPUTING SINEWAVES WITH LOOK-UP TABLES

In an analog function generator or VCO, we saw that a computational approach
rather than a second-order system approach was used to obtain sinewaves. A
similar procedure in the digital case involves the look-up table. Here, time
advances (driven by the digital system's clock) and in pace with it, we know the
appropriate phase for a given frequency. This allows us to simply look up the
corresponding samples from a table stored in memory. The same table (often
only a single quadrant is used) can be used for as many sinewaves as we care to
consider.
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SOME SUMMARY COMMENTS

While sinewaves are clearly fundamental to music synthesis, analog sinewave
oscillators are not especially easy to generate directly, or to work with; nor are
they especially useful in isolation. Digital generation of sinewaves from a
second-order network can be, however, very reliable. Yet one must still be very
careful to choose an appropriate network, and to be prepared for subtle quirks in
their performance. These isolated sinewaves are not especially useful either, but
the potential for simultaneous generation of multiple sinewaves (by cutting and
pasting lines of code) should not be overlooked.
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