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IMPROVED SIGNAL/NOISE RATIO WITH
FIRST-ORDER NOISE SHAPING: AN EXAMPLE

The concept of oversampling is likely familiar [1-4]. One can list a good number of
reasons for using oversampling: less quantization noise, simpler analog anti-aliasing
(input guard) and anti-imaging (reconstruction, or smoothing) filters, less phase
distortion, and several others. In fact, there is no actual performance downside to
using oversampling, and the actual implementation costs (over just ordinary sampling)
are usually minimal. It's just a good idea - and that's about it. Perhaps this can be
understood in terms of a denser set of samples being, just naturally, a better and more
complete representation of a signal.

One of the free benefits of oversampling is an improvement in signal-to-
quantization-noise ratio (which is free if we assume we have already decided to do
oversampling for some other reason). It is well known that we get an extra half-bit
(3db) improvement in S/N for each octave (factor of two) of oversampling. For
example, if we have times-8 oversampling (three factors of 2), we would get a 9db
improvement in S/N. More importantly, this free benefit of oversampling can in fact be
enhanced by the use of so-called noise shaping. It is the purpose of this note to
illustrate how noise shaping can enhance performance through a simple example. At
the same time, we will look at the original cases (no noise shaping, and no
oversampling) for comparison.

We start with the idea that a standard white random-noise model can be used for
the quantization error. That is, the noise amplitude is uniformly distributed
(conveniently set to 1) from 0 to half the sampling frequency (Fig. 1). This noise is all
"audible" for our purposes here. What we usually do is integrate the power spectrum
from 0 to half the sampling frequency, which is traditionally done from 0 to n.

12dio =n (1)

Fig. 1 Uniform Distribution
of quantization error
according to standard
modeling

fs/2 (freq)

w
AN-345(1)



Here p0=7t will serve as a reference level. We are not overly concerned with what the
actual value of po is - we just want to look at oversampling and noise shaping relative to
po (do we gain or do we lose).

One way to decrease the noise power below p0 would be to reshape the noise
spectrum of Fig. 1 so that the integrated power would be less than TT. However, this
can not be done arbitrarily. For one thing, we want to shape the noise without shaping
the signal itself, so something like an ordinary filter, in series, is out of the question.
One possible thing to do, however, would be to integrate from 0 to some frequency
less than n. This we could justify if it were true that the noise above this upper
frequency is inaudible. When we implement oversampling, we generally get an upper
portion of the spectrum that is inaudible. For example, with times-2 oversampling, the
sampling frequency is doubled, and the quantization noise is distributed over a
frequency range that is twice as wide, while at the same time, the audible region does
not change. [Here, by "audible" we are considering the frequency limitations of
amplifiers, reconstruction filters, loudspeakers, etc., as well as the frequency
characteristics of the human ear.]

Thus, effectively in the case of times-2 oversampling, we do the integral of equation
(1)onlyt07t/2.

jr/2

12dco =n/2 (2)P,=/
0

which is clearly only half the power. In terms of signal amplitude (voltage if you prefer)
this would be 1/V2, which would be a 3db improvement. Since a 2:1 improvement
would be what we would get from one extra bit (the quantization interval would be 1/2
its previous value), we can say that we get a half-bit improvement for each octave of
oversampling. Not much - but it's free!

In a sense, oversampling is a crude form of noise shaping, as we are effectively
shaping the noise (spreading it over a wider frequency range) so that half of its power
is inaudible. It would be more helpful if the noise spectrum could be shaped so that a
much greater portion of its power were in the region that will become inaudible. The
trick, as we mentioned above, is to shape the noise without shaping the signal itself.
To do this, we need to consider how noise is inserted in the quantization process. Fig.
2a shows the standard model: the quantization error E(z) is simply added to the signal
X(z). One way to look at this is to consider an A/D converter followed by a D/A
converter. The quantization error is the difference between the discrete analog signal
at the input of the A/D and the discrete analog signal at the output of the D/A.
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Fig. 2 Ordinary quantization (a) is modeled as an additive error E(z). With
first-order noise shaping (b) quantization occurs in a loop structure, and
the noise E(z) can be shaped without shaping the signal X(z).

This second structure is a first-order noise shaper, and it can be confusing, since it
appears to be a digital filter - and we have represented it as such. It will be useful to
recognize that this is actually, a discrete-time filter which represents the functions of the
quantizer itself: an A/D converter often called a Sigma/Delta converter. Thus we are
seeking to understand the converter and are using this discrete-time filter model to do
so. This understood, we note that the output Y(z) is the sum of two terms:

Y(z)=E(z) + H(z)[X(z)-Y(z)J (3)

From this, we see that the signal itself is subject to a transfer function:

Y(z)/X(z) = H(z)/[1 + H(z)] (4a)

while the noise is subject to a different transfer function:

Y(z)/E(z)=1/[1 + H(z)] (4b)

These are relatively meaningless until we get to the point of putting in some specific
filter H(z). If we make H(z) a simple, first-order discrete-time integrator, H(z)=zrV(1-z-'),
we have:
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which is a pure unit delay, which leave the signal spectrum unshaped. In contrast, the
transfer function for the noise is:

HE(z»=.Y<zVE(z)U.-1-r< (5b)

which is a simple high-pass filter. This is good because we wanted to move the noise
power preferentially to higher frequencies where they would become inaudible. What is
not so good is that this particular filter in equation (5b) has a gain of 2 at half the
sampling frequency. That is, while we shape the noise the way we want, we also
amplify it, and there is no way of simply changing the gain of this filter.

None the less, the situation is quite good as long as we are planning to use a
substantial oversampling factor. With the filtering of equation (5b), we have:

|HE(eJ»)|2 = E(1 - e>)(1 - el")] = 2 - 2 cos(o>> (6)

The magnitude, and the magnitude squared as in equation (6) is plotted in Fig. 3.
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Fig. 3 Magnitude (a) and squared magnitude (b) of HE(Z) = 1 - r1. The squared
magnitude (b) corresponse to the shaping of the noise power. For comparison,
the unshaped noise power is seen in (b) as the dashed line.
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All that remains to do is to integrate equation (6) from 0 up to some fraction of IT. It
is convenient to think in terms of octaves of oversampling. With no oversampling (0
octaves of oversampling) we integrate to n. With one octave, we integrate to it/2, with
two octaves, we integrate to ir/4, and so on. From Fig. 3b, we see that the integral,
when taken all the way to it, is sure to exceed the integration of 1 from 0 to it (dotted
line corresponding to no noise shaping). However, when we integrate only to small
fractions of it, we can clearly see that there will be far less power integrated, and we
can win the game. Specifically:

Tl= fJ

0

(2 - 2 cos{o>)) dco = 2tom - 2 sin(om) (7)

All we have to do now is plug in values of com = it/2m where m is the number of octaves
of oversampling. We then compare the results to it, the no noise shaping case. It is
conventional to report this comparison in db of amplitude (voltage) rather than in power.
Thus:

dbs = -20 Log10 I Vpm / VrT]

Some results are tabluated in Table 1

(8)

^ Improvement in S/N as a result of m octaves of oversampling
with first-order noise shaping, relative to the no oversampling, no noise-
shaping case.

m

0
1
2
3
4
5
6
7
8
9

10

dbs

-3.0103
4.3964

13.0241
21.9544
30.9602
39.9848
49.0141
58.0446
67.0754
76.1063
85.1372

Mauser's
Rule of Thumb

-6
3
12
21
30
39
48
57
66
75
84

Orphanidis
Formula

-5.1541
3.8459
12.8459
21.8459
30.8459
39.8459
48.8459
57.8459
66.8459
75.8459
84.8459
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Some additional data is offered in Table 1. Hauser [1] offers an excellent review
paper on oversampling and noise shaping, and gives the useful rule of thumb for the
number of bits that are effectively added due to noise shaping. He says that with first-
order noise shaping you gain 1.5 bits per octave of oversampling, but must pay a one-
bit "penalty." Converted to db (multiplying by 6db per added bit), we obtain the results
shown in the table. A slightly better rule of thumb would be to show one additional db
improvement to all values. None the less, the rule is appropriate when discussing
added bits rather than db. Note that the largest estimation error occurs when m=0
(which is a loss anyway so would not be considered).

Orfanidis [2] gives a formula for the change of the number of bits that occurs with a
ktfi order noise shaperwith m octaves of oversampling:

AB = (k + 0.5)m-0.5Log2[*2k/(2k+1)] (9)

For k=1, these results (again converted to db) are shown in Table 1. {In general, all the
results are in excellent agreement.)

Orfanidis' formula is an approximation. What he does can be discussed in terms of
equation (6) which we recognize as equal to 4 sin2(o/2), a power of a sine function. If
we had higher order noise shapers, we would have this factor raised to the kth power.
For small o>m (large amount of oversampling), the sine can of course be approximated
by its argument, and the integration of the power is thus much simpler to do.

The consequences of obtaining additional (effective) bits relate not just to a possible
reduction in quantization noise, but also to the possibility of reducing the number of
actual bits in an A/D or D/A converter and obtaining the same performance we had with
a larger number of actual bits. Ultimately, we are able to get down to a one-bit
conversion system, with some inherent simplicity and a guaranteed linearity. The
conflicting claims of "more-bits-are-better" and "fewer-bits-are-better" is a source of
confusion to many engineers, not to mention marketing copywriters, and the audio
buying public.
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