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Iithaca, NY 14850 March 1996
(607)-273-8030

A GENERAL REVIEW OF
FREQUENCY SAMPLING DESIGN

1. INTRODUCTION

The z-transform of a digital filter's impulse response, h(n), is the filters transfer
function H(z) where:

H(z) = X h(n)z™ (1)

n=-co

For an FIR filter, chosen so that h(n) is zero except for n=0,1,...N-1, and for H(z)
evaluated on the unit circle in the z-plane (z = ei®) we have:

N-1
H(ei®) = £ h(n) e ne (2)
n=0

which is the Discrete-Time Fourier Transform (DTFT) of the impulse response,
commonly referred to as the frequency response. Note that H(ei®) is a
continuous function of frequency o, periodic in o with period 2x, even though h(n)
is discrete in time. Thus H(el®) and h(n) in equation (2) constitute a "Fourier
series" expansion, although the roles of time and frequency are interchanged
relative to their usual presentation (where a periodic function of time is
represented in terms of discrete frequency components). Here the discrete time
function has a periodic description in frequency.

Although H(el®) is continuous, it can be evaluated at discrete points. If we
evaluate it at N discrete, equally spaced frequency points, indexed by k=0,1,2,...
N-1, we have frequencies:

o, = (2r/N)k (3)
and we can write:
N-1
H(k) = H(ejmk) = H(ej(Zn/N)k) = 3 h(n)e-j(Zﬂ/N)nk (4)
n=0

which is the DFT of h(n).
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This suggests the simplest view of frequency sampling where the impuise
response is obtained by taking

h(n) = DFT-1 [D(k)] (5)

where the D(k) are samples of some desired frequency response. Note that
because a DFT is the same as samples of the DTFT, the frequency response of
the filter obtained in this way will match D(ei®) exactly at the points o, but not in
general elsewhere. The idea is that if the samples are taken closely enough
together, the errors between the samples may not be too large.

2. IGNORING THE PHASE

Equation (5) is not a general case of frequency sampling, and yet it is already
deceptively simple. In particular, we often think of a desired response in terms of
the desired magnitude of the response, but here we must also get the phase
correct, and this can be a problem. It is interesting to see how bad thing can get.

Suppose we are negligent about phase. We decide to take frequency samples
purely on the basis of magnitude. That is, we want, for example, a low-pass with
a cutoff at 1/4 the sampling frequency. Suppose further that we decide on an
N=31 length filter. For sampling frequency f_, the magnitude of the samples
could be chosen at frequencies 0, /31, 2f /31, 3f/31, and so on up to 30f/31.
Accordingly samples for frequencies kf /31 < fJ4 (i.e., for k=0 1,2,...7) will be 1. It
might seem that samples for k=8 and above should be zero, but we know that the
frequency response has a negative side and is periodic in f,. Thus a samples at
fs (which is not included here) has magnitude of 1, as do seven more samples
(which are included) below f.. Thus we also have ones at 30f /31, 29f /31,
28f /31, 27131 26f /31, 25f /31, and 24f/31. All other samples have zero
magnitude. Thus we might try (and will be unsuccessful with) a D(k) as:

D(k) =1 k=0,1,2,3,4,5,6,7
=0 k=8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 (6)
=1 k=24,25,26,27,28,29,30

If we take h(n) as the inverse DFT of this D(k), we get the impulse response shown
in Fig. 1a and the corresponding magnitude of the frequency response shown in
Fig. 1b. Clearly, this is almost certainly not what we had in mind as a low-pass
filter. However, note that the magnitude response does in fact go through the
specified samples.

While it is clear from the magnitude response that the impulse response we
have obtained is unsatisfactory, it may also be clear from looking at the impulse
response directly that it is not low-pass. For a low-pass, we would expect the
impulse response to have a sinc-like profile (larger impulse response values

AN-337 (2)



h{n)
o)
0.4y
0.21
O "
-0.2 : : .
0 10 20 ., 30
c
h(n) Q
0.4t
®
0.21
0 @@@%GQ%O?@ Q OJ)Q)?(D&)@%@%@
o
-0.2 : : :
0 10 20 n—» 30

| H(eio) |
1.5

0.5

15
| H(ei®) |

0.5

iy

LI
0 0.2 0.4 olog
S0-0-60 f’f)i
0 0.2 0.4 olog

Fig. 1 Zero phase filter has impulse response as seen in Fig. 1a and
magnitude response as shown in Fig. 1b. Rotating the impulse
response to the sinc-like response of Fig. 1¢ results in an acceptable
low-pass magnitude as seen in Fig. 1d. This is only an ad hoc fix

for this particular case, however.

concentrated in the middle).

ends. [In fact, it is this peaking at the ends that accounts for the ripples.]

Here we see that the impulse response peaks at the

Itis

probably evident that if we were to take n=0 in Fig. 1a as the center, wrapping the
response around periodically, that we would get something better resembling a

sinc-like impulse response.

This is indeed the case.
this way, we do get exactly the expected result (Fig. 1c and Fig. 1d).

In fact, if we rotate h(n) in

This is an empirical fix that we would likely do instinctively upon seeing the
problem with Fig. 1a, thus leading us to a correct result, but leaving us to wonder

what we had done wrong.
case.

AN-337 (3)

But it is not a fix that will work in the even-length



3. PURE LINEAR PHASE AND REALISTIC LINEAR PHASE

The problem above was a failure to address the requirement of getting the
phase correct. For the most part, we will be looking to achieve a so-called
“linear phase.” However, in most cases, a true, pure, linear phase is not
necessary or even possible. Further, there are in most text books various
classes of linear phase, all of which represent perfectly good filters. What we
often find on close examination is an attempt to represent the phase as a pure
linear phase for the purpose of describing the desired response. This done, we
may well find that the actual phase that is achieved is a sub-category of pure
linear phase - specifically that the actual phase includes phase jumps of = in the
stopbands. This is an entirely expected, desirable, and necessary result, and is
in no ways a defect.

Specifically, a pure linear phase would be characterized by
e iblo) = g -liN-1)2]e (7)

for a length N FIR filter. Here ¢(w)=-[(N-1)/2]e, hence the linearity of the phase with
frequency. This is a constant time delay of [(N-1)/2].

Also associated with the idea of linear phase is a symmetry of the impulse
response about some center. This symmetry criterion includes a general class
of linear phase response, and provides an extremely useful viewpoint from which
we can develop and then understand the overall problem in terms of an amplitude
function.

Here suppose that we have an odd length filter (for specificity, N=5) with a
symmetric impulse response:

H(el®) = hy +h,edo + hy e2o + hy edie + h, edie (8)
Here the subscripts on the h's simply are used to distinguish specific numbers,
and are not of course the time indexes. Note that we can rearrange equation (8)
as follows (see also Fig. 2a):

H(el®) = e-%i® [ hy e + hy ei® + h; +h, edo + h, e-%iv]

=e?o[ a, +a,cos(e) +a, cos(2w) ] (9)
where a;=h,, a;=2h,, and a,=2h,.

A similar, but nonetheless different, expansion is available for even length
(done here for N=6):
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H(el®) = hy + hyedo + hy e e + h, edio+ h, e4i® + h, eSie
= e-6/2)io [a; cos(w/2) + a, cos(3w/2) + a; cos(5w/2) ] (10)

where a;=2h,, a,=2h,, and a;=2h;. An example showing the components of this
amplitude function is seen in Fig. 2b.

The way we interpret these is in terms of a pure linear phase eil(N-1)2]e times an
"amplitude" function A(o) which is the sum of cosines, as indicated. That is, we
decompose H(ei®) into two multiplicative terms:

H(eJ"D) = gil(N-)2]o . A(n) (11)
as compared to a more classic multiplicative decomposition:
H(el®) = el¢le) - |H(el)| (12)

in terms of a phase ¢(») and a magnitude |H(ei®)|. From equations (11) and (12) it
is clear that A(o) and |H(ei®)| are not the same thing unless A(o) is always positive.
This would likely only be true for filters that have no stopbands (perhaps some
kind of amplitude equalizer). However, other filters such as common low-pass,
band-pass, and high-pass will have bands where we intend to make the response
approximate zero. In making it approximate zero, we need to cross zero one or
more times, and this corresponds to zeros on the unit circle, and corresponding
jumps of = in phase, interrupting any pure linear phase.

Another way to look at it is to write:
el#() |H(el*)| = H(el*) = ellN-12le sgn{A(n)} sgn{A(e)} Ae) (13)

where sgn{A(o)} is the sign of A(o), and hence sgn{A(o)}A(o) = |H(el®)| and we
then see that the actual phase is:

e i #(0) = gdlN-120 sgn{A(e)} (14)

from which we see that the actual phase is the pure linear phase as flipped (hence
n phase jumps) by the sign of A(o).

To be clear, we want to assign a phase, and we will assign a linear phase [as in
equation (7)], but we expect to end up with a phase as in equation (14), which is
not a pure linear phase. The importance of these phase jumps of = should not be
misunderstood. These represent an inversion of the signal, and this is not the
same thing as delaying the signal by half a cycle. While inversion changes the
phase at any frequency by 180°, an inversion represents no delay (see Fig. 3).
This point can be further emphasized by computing the classical "group delay.”
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Fig. 3 An inverter does not correspond to a delay. If it did, two inverters
would be twice that delay, and yet two inverters in series are no delay. If

one inverter were a delay, and the other a compensating advance, which
one is which, since both inverters are identical?
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4. APPLYING LINEAR PHASE TO INVERSE DFT METHOD
- ORDINARY FREQUENCY SAMPLING

Having now looked at the general principles involved, we can think about how
to write a frequency sampling program or series of programs. Here we will be
looking at a series of programs for different requirements and for different
input/output options. It is left to the reader to combine ideas into a single
program if that seems useful.

The first program we will look at is fsamp.m which uses the inverse DFT and
hence, samples are equally spaced in frequency. This program is capable of
internally generating all the individual frequency samples from a less detailed
specification in terms of passbands and stopband. It also add a nominal linear
phase appropriate for the filter length. Specifically, for this program, a filter
specification format (input parameters to fsamp.m) consistent with other
MATLAB™[1] filter design functions will be used. [That is, the input parameters
to the function fsamp.m will be used to internally generate the actual sample
points (frequencies and corresponding amplitudes) instead of having to enter or
otherwise generate each point individually.] This of course constrains us to
certain filter options, but it is easier for simple filters.

Optionally with fsamp.m, the user can input a vector, m, of amplitude samples,
in which case the internally generated default is ignored. This option is perhaps
most useful in conjunction with repeated use of fsamp.m while also employing the
optional output, mout. The mout output option keeps the last amplitude vector
used. Inthe case of an initial run with no input vector m, mout is the internally
generated amplitude vector obtained from the initial specifications. This is very
often an extremely useful initial trial vector even when we want to refine it. This
allows one to start with an excellent initial guess and then to iteratively trim the
amplitude vector. This is commonly useful when we adjust one or more transition
band samples (see Examples 3 and 4 below).

The program is straightforward. It begins by generating the frequencies at
which samples will be computed, and then generates the corresponding linear
phase term at those frequencies. This starts with a pure linear phase, but then
inverts the phase for the upper half of the frequency vector in the case of an even
number of samples (that is, heading toward an even length fiiter). This is best
understood with reference to Fig. 2. From Fig. 2 we note that the amplitude
function for an odd length filter is even symmetric about 0 and about f /2 (z). The
even length filter has an amplitude that is even symmetric about 0 but odd
symmetric about f/2 (). Another way to look at it is that the even length filter is
an expansion in terms of odd multiples of ®/2 and thus has period 4= instead of
2rn. Perhaps most simply, we see that there is a zero at f /2 for the even length
case, the well-known "automatic" zero at z=-1 in the z-plane the occurs for even
length.
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PROGRAM 1: fsamp.m

function [h,mout]l = fsamp(N,f,a,m)

%  function [h,mout] = fsamp(N,f,a,m)

%

% N = length

% f = frequency vector on 0-1 with 1 = half the sampling freq.
% a = amplitude vector

% m = optional input amplitude

% mout outputs the latest amplitude, which is either generated
% by the first run of the program, or provided by the

% optional input m. mout can be modified externally and

% then used as an input for another iteration.

% The alternative input amplitude m can be used to override

% the default two-band filter if desired

%

% B. Hutchins Fall 1995

%

k=0:N-1

w=2*pi*k/N;

R el generate phase--------ssceceon-

ph=exp(- j*w*(N-1)/2);
if mod(N,2)==0;
ps=fones(1,N/2) -ones(1,N/2)1;

ph=ph.*ps;
end
fmmmmmrmmmmms generate default amplitude------------
for n=1:N

if w(n) < f(2)*pi; mask(n)=a(2);
elseif w(n) > (2*pi-f(2)*pi); mask(n)=a(2);
else mask(n)=a(3);

end

Hom replace by specified amplitude if provided-----
if exist('m')==1; mask=m; end

H=mask.*ph;

h=ifft(H);

figure(1);

subplot(221)

stem(k, h);

axis([-2 N+2 -.3 .71);
MH=abs(freqz(h,1,500));
MH=MH/MH(1);
subplot(222);plot([0:.001:.4991 ,MH)
axis([-.05 .55 -.3 1.31);

grid

MHDB=db(MH, 120,20);
MHDB=MHDB-MHDB(1);
subplot(224);plot([0:0.001:.4991 ,MHDB)
axis([-.05 .55 -50 101);

grid

figure(1)

% output latest mask

mout=mask;

Now, in the case of frequency sampling, as a consequence of wanting to use
the DFT, and of the way the DFT is defined, we are forced to choose frequencies
from 0, up through f /2 (r), to just one sample short of f, (2r). Thus we cross the
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break at f /2 (r) and must deal with the odd symmetry in the even length case.
We did not need to deal with this in the case of weighted integrated square error
(AN-332) because we integrated from -z to =, and not from 0 to 2x. In total, this
probably amounts to little more than an interesting quirk.

Having now generated the correct phase at the correct frequencies, we next
will generate the corresponding amplitudes. This we do by comparing each of
the frequencies with the band-edges specified on the command line. This is quite
analogous to the manner in which we arrived at the samples in equation (2). Here
we have written code that is restricted to a two band filter, but modification for
more bands is not at all difficult. Having now generated this vector of amplitude
samples (called here the mask), we will just discard it if there is present an
optional input vector m in the command statement. Whichever mask remains, the
default or the input, is then multiplied by the phase to give the actual frequency
samples H.

This completes the design with the exception of the key step of obtaining the
impulse response as the inverse DFT of the frequency samples H. The remainder
of the program deals with plotting.

Below we give same examples illustrating the use of this first program.
Example 1 (Fig. 4) is fundamental and entirely analogous to the case of Fig. 1.
This is generated by:

[h,mout] = fsamp( 19, 2%[0 0.25 0.25 0.5], [1 1 0 0] ) (15)

and thus calls for a length 19 low-pass filter with a cutoff frequency of f /4. Here
the frequency vector is written in terms of bandedges; with a passband from 0 to
0.25f, and a stopband from 0.25f, to 0.5f_. This vector is multiplied by 2 here
since we are employing the MATLAB filter specification standard where f;=2. The
amplitude vector [1 1 0 0] here describes the amplitudes at the ends of the bands.

The result is very typical of frequency-sampling design, and quite similar to
most FIR low-pass designs. From Fig. 4a, we find a sinc-like, length-19 impulse
response, symmetric about the center. The magnitude response, Fig. 4b is seen
to pass through 1 at five equally spaced points, and then through 0 at five equally
spaced points. The plot in db, Fig. 4d can be seen to have a sidelobe rejection of
about 16db. Finally, the plot of the zeros of h(n) (Fig. 4c) is typical in having zeros
on the unit circle in the stopband, and zeros in reciprocal-complex-conjugate
quadruples in the passband. Note that each dip in the passband thus
corresponds to four zeros total. Each null in the stopband corresponds to two
(complex conjugate) zeros. This filter, being of odd length, has no zero at z=-1.

Example 2 shown in Fig. 5 is fairly similar, except it shows a case that is a
somewhat longer length, and an even length. The zero plot is not shown, but is
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similar to the first example except it has more zeros, and this case has a zero at
z=-1. Even without the plot we know that there is a zero at z=-1 since we see the
magnitude plots go down at 0.5f_ rather than remain high as Example 1 did. Most
significantly, note that while the cutoff is sharper, the ripple in the passband and
stopbands is not much different than the length-19 case (again, about -16db for
the first sidelobe). Thus it is seen that a longer length will not improve stopband
rejection, except as the sidelobes roll-off faster.

At this point we will turn our attentions to some manipulation of the samples to
see what improvement in stopband rejection might be achieved thereby. This
particular program has been written to make this fairly easy to do. Here we will
start with the case of Example 1, and use its output vector:

mout=[1111100000000001111]}] (16)

and modify it as:

m=[1111.50000000000.5111] (17)
h(n) o
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Fig. 6 Example 3: Length 19 with transition-band sample set to 0.5 results
in less sharp cutoff, but greater sidelobe rejection.
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we can then simply add this to the input command line:
[h,mout] = fsamp(19, 2+[0 .25 .25 .5],[1 10 0], m) (18)

This result, shown in Fig. 6 (Example 3) has a less sharp cutoff compared to
Example 1, but a significantly better stopband rejection (about -30db). In one
more iteration, Fig. 7 (Example 4), we modify mout of Example 3 (same as m at the
input of Example 3) for a new m as:

m=[111.85.5.1500000000.15.5.851 1] (19)

The result is seen in Fig. 7 where we see an even less sharp cutoff and an even
better stopband rejection (about -43 db).

h(n) . .
0.6} [Heo)|

1
0.4} \
0.2t T T 0.5
Ot coof\f‘@d)CP (P(b(b’"‘fmo 4 \

0
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0 5 10 15 20 n 0 0.2 04 oo,
10
0
Fig. 7 Example 4, Length 19 10 N\,
with additional transition- \
band -20
and samples db \
-30 \
[H(el®)| -40 \
A
S0 0.2 0.4 olo

5. UNEQUAL SPACING OF FREQUENCY SAMPLES

Frequency sampling in a more general sense need not require equally spaced
samples. Instead, we seek a length N impulse response h(n) that is related to N
frequency samples by N equations in N unknowns. If we set up and solve this
problem, one of its special cases will be equally spaced samples and a matrix
representing the NxN equations that is the same as the DFT matrix.
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Before setting up the equations leading to the program gfs.m, we should
mention two important consequences of using unequal spacing. First, there will
be no automatic way of generating the samples from specified passbands.
Instead, we will in general need an input vector f of frequencies and a
corresponding vector of amplitudes. Secondly, we need to recognize that there
can be severe consequences of choosing the unequal spaced points.

The basis for the program here goes back to equation (2). We simply have in
mind N frequencies o, with N corresponding versions of equation (2), thus giving
us our N equations with N knowns (H), and N unknowns (h). While this works for
any N frequencies and corresponding samples, we will be looking here for
choices of sample values that give us real and symmetric (linear phase) impulse
responses. The same phase inversion for samples from = to 2z that was required
for even length in fsamp.m is also needed for even length here.

As an example, if we have N=4, equation (2) yields four equations:

H(el*1) = hy + h,ede1+ h,e2ie1 + hye-Siot (20a)
H(eio2) = hy + h,edo2 + hye-2io2 + hyede2 (20b)
H(el®3) = hy + h,ed°3 + h,e-2i®s + h,e-3ies (20c)
H(ei*4) = hy + h,ed4 + h,e-2io4 + hye-3io4 (20d)

which are in matrix form:

H=Mh (21)
where
M(k,n) = eidnok (22)

[In inverting equation (21) with MATLAB, we need to recognize that to get the
required:

h=M-1H (23)
we need to use the transpose of H, and in MATLAB notation, this is H." and not just
H', which is always the conjugate transpose.] Note that if the frequencies are
equally spaced we would have o, = (2n/N)k and the matrix M becomes:

M(k,n) = ed(2n/Njnk (24)

which is the DFT matrix.
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The program gfs.m allows experimentation with unequal spacing, although in
many cases, we will find it more convenient to work with the amplitude function
(program amp.m below).

Example 5§ (Fig. 8) shows the unequal spacing program used in an equal
spacing application. The command lines are:

f=[0.05.1.15.2.25.3.35 .4 .45.5.55 .6 .65.7 .75 .8 .85 .9 .95] (25a)
a=[11111110000000111111] (25b)
h = gfs(f,a) (25¢)

The result is the length 20 impulse response as shown in Fig. 8. The
corresponding magnitude response shows the amplitude values as specified.

Next, in Example 6 (Fig. 9), we will get around to an unequal spacing of
samples. The simplest case will be to move one sample. Instead of choosing a
sample at 0.15, we will move it to 0.17. This also means that we need to move the
sample at 0.85 down to 0.83. Thus we have as the only change:

f=[0.05.1.17.2.25 .3 .35 .4 .45.5.55.6.65.7 .75 .8 .83 .9 .95] (26)

The impulse response for Example 6 is seen in Fig. 9a, and is virtually identical
to Fig. 8a on the scale shown, indicating right away that nothing drastic is
happening here. Fig. 9b shows the corresponding magnitude response, again
very much like Fig. 8b, but with the one difference that the response now goes
through 1 at 0.17, not at 0.15, the one change that we specified. This shows that
the method does work as we desired.

Example 7 (Fig. 10) shows another application of the unequal spacing program,
this time to an equally spaced case, but with an initial offset. The command lines
are:

f=[.5.15.25.35 .45 .55 .65.75 .85 .95 ] (27a)
a=[1 11000011 1] (27b)
h=gfs(f,a) (27¢c)

Here note that for the first time, we see that there are the same number of non-
zero samples at the high end of the vector a as there are at the low end
(previously, there was always one fewer on the high side). This is because we
have chosen samples at intervals of 0.1, but offset by 0.05. Note that the
frequency sampling still works fine. We do get an extra zero at 0.5 due to the
even length (once again, consider Fig. 2b).
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PROGRAM 2: gfs.m

function h=gfs(f,a)

%

% GENERALIZED FREQUENCY SAMPLING

% even/odd order regular/irregular spacing
% linear phase assumed

%

% h = gfs(f,a)

% f = frequency vector on 0 to fs=1

% a = corresponding amplitudes

%

% B. Hutchins Jan 1996
N=length(f);

w=2¥*pi*f;

% - linear phase -

ph=exp(- j*w*(N-1)/2);
% - odd length amplitude odd symmetry about fs/2 -
if floor(N/2)==(N/2)

ph = ph.*[ones(1,N/2) -ones(1,N/2)]1;

end
H=a.*ph;
for n=1:N
for k=1:N
Mk, n)=exp(-j*(n-1)*w(k));
end
end

h=inv(M)*H.';

k=0:(length(h)-1);

figure(1);

subplot(211)

stem(k, h);

MH=zabs(freqz(h,1,500));
MH=MH/MH(1);
subplot(212);plot([0:.001:.499] ,MH)
grid

6. SAMPLING THE AMPLITUDE FUNCTION

As mentioned with regard to the gfs.m program, it is frequently easier and more
computationally efficient to work with the sampling of the amplitude function
rather than with a sampling of the frequency response itself. With this approach,
we can automatically includes the linear phase. Also, we only need to specify the
lower half of the response: 0 to =. In addition, we are in general then only solving
half as many equations with half as many unknowns, meaning an inversion of the

matrix of only about 1/4 the original size.

Samples may be chosen for the amplitude function for the odd length case:

A(o,) = a5 + a, cos(a,) + a, cos(2m,) + ...

AN-337 (16)



h(n) o6 iy

0.2+ k

| H(el®) |

0.5

0 005 01 015 02 025 03 035 04 045 05 G)I(Ds
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while for even length, the amplitude function is:
A(ey) = a, cos(e,/2) + a, cos(30,/2) + a, cos(5a,/2) + ... (29)

Thus L samples can result in either a length 2L-1 odd length filter or a length 2L
even length filter. The extra tap in the even length filter is merely a consequence
of the automatic zero at z=-1 that occurs with even length.

The program amp.m actually designs both an even length and an odd length
option by setting up L equations in L unknowns using equation (28) or equation
(29). Here the matrix elements are obtained by evaluating cosines at the
specified frequencies, but otherwise, the entire program is quite similar to gfs.m.

Here we are again looking at the issue of unequal spacing of frequency
samples, and want to look at a wider range of examples. However, it is useful to
begin with examples related to equal spacing as a means of better understanding
the sampling of amplitude. That is, it is useful to look at conventional-looking
responses before looking at the more unusual ones that result when we exercise
the flexibility of the spacing options.
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PROGRAM 3: amp.m

function [ho,hel=amp(f,a)

h = amp(f,a)
f = frequency vector on 0 to fs/2 (fs/2 = 1/2)
a = corresponding amplitudes

Does both even and odd length filters based on amplitude

32 38 20 2 32 32 e

B. Hutchins Jan 1996

L=length(f);
W=2%pi*f;

% Matrix for even length
for n=1:L
for k=1:L
ME(k,n)=cos((n-1/2)*w(k));
end
end

% Matrix for odd length
for n=1:L
for k=1:L
MOCk, n)=cos((n-1)*w(k));
end
end

aae=inv(ME)*a.!';
aao=inv(MO)*a.';

% even length case
for n=1:L
he(n)=aae(n)/2;
end
he=the(L:-1:1),he(1:L)1;

% odd length case
for n=2:L
ho(n)=aao(n)/2;
end
ho=Tho(L:-1:2),aa0(1),ho(2:L)1;

% plot odd length result
k=0:(length(ho)-1);

figure(1);

subplot(211)

stem(k,ho);
MHO=abs(freqz(ho,1,500));
MHO=MHO/MHO(1);
subplot(212);plot([0:.001:.499]1 ,MHO)
grid

pause

% plot even length result
k=0:(length(he)-1);

figure(2);

subplot(211)

stem(k, he);

MHE=abs(freqz(he, 1,500));
MHE=MHE/MHE(1);
subplot(212);plot([0:.001:.499] ,MHE)
grid
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Here we will begin with six examples, three runs of amp.m, each of which
produces two filter designs (odd and even length). These filters are very short so
as to better illustrate the consequences of amplitude sampling.

Figure 11, Examples 8a and 8b show the odd-length and even-length filters that
result from a sampling at three frequencies on 0 to 0.5. The three frequencies are
0, 0.2, and 0.4, and the corresponding amplitude samples are 1, 0, and 0. Thus we
run:

[ho,he] = amp([0 0.2 0.4],[1007]) (30)

After running this, we discover immediately an “old friend," a five tap "moving
average" filter for the case of odd length-5, the ho output. This results from the
effective equal spacing [see equation (32)]. In fact, this exact same result can be
obtained by using either of the previous programs, as:

h =fsamp(5,[0 0.02 0.02 1],[1 100]) (31)
h=gfs([00.20.40.60.8],[10000]) (32)

Here, comparing equation (30) with equation (32) is probably the best indication of
the savings of amp.m as compared to gfs.m.

The alternative length-6 output he (Example 8b) is also interesting. Note that in
going from length-5 to length-6 we must have a zero at z=-1, corresponding to a
multiplicative numerator term of (z+1). The term z+1 is a two-tap moving average,
and note that the impulse response of Example 8b is indeed a convolution of a 5-
tap moving average with a two-tap moving average. In fact, we see that the only
difference between Example 8a and Example 8b is the extra zero at z=-1. This of
course results in some improvement to the stopband for the highest frequencies.
For the sample spacing used here, we note that the odd-length filter is the most
familiar.

Moving on to Fig. 12, Example 9a and 9b, we see a second run of the amp.m
program, this time as:

[ho,he] = amp([0 1/6 2/6 ,[1 0 0]) (33)

Example 9a, the odd-length case is the curious case here. The result is not low-
pass, but more of a band-reject, if anything. Another way to look at it is thatitis
a three-tap moving average filter with twice the usual delay, and this is easily seen
in the lowpass from 0 to 0.25, reflected from 0.25 to 0.5. Note that with the taps
on either side of the center going to zero, this amplitude response is of the form

a + Bcos(20). The peaking around 0.5 can be attributed to the failure to take a
sample there.
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Example 9b of Fig. 12, the corresponding even length case now is the one that
makes sense, coming out as a 6-tap moving average filter. Note that the spacing
for this case (1/6) is just what one would use for a length-6 filter. This point can
be further emphasized by noting that the exact same 6-tap moving average results
from the previous programs as:

h = fsamp( 6, [0 0.02 0.02 1,[1100]) (34)
h=gfs([0 1/6 2/6 3/6 4/6 5/6],[100000]) (35)

Note that the zero pattern of Example 9b is the same as that of Fig. 9a, except
here we do have an extra zero, the one at z=-1 that come with even length. Once
again we see that the impulse response of the even length filter (Example 9b) is
just that of Example 9a, convolved with (z+1).

To this point, with the program amp.m, we have not placed any samples at half
the sampling frequency. In one more run, Examples 10a and 10b, Fig. 13, we
have a sample specified at f /2:

[ho,he] = amp( [0 1/6 2/6 3/67],[1000]) (36)

This extra amplitude sample, set to zero here, will add two to the lengths of the
filters as compared to Examples 9a and 9b. Also associated with this sample at
0.5 is a double zero at z=-1, since the specification on half the band represents
both the lower specified band and the upper, reflected, unspecified band (thus
including 0.5 twice). Example 10b now uses the same samples as Example 10a,
except here we go to an even-length case, and pick up yet one more zero at z=-1,
for a total of 3. Note the interesting sequence of Examples 9a, 9b, 10a, and 10b,
which correspond to 0, 1, 2, and 3 zeros at z=-1 respectively, with the other four
zeros the same in all four cases. In this sequence, we see increasing levels of
rejection in the vicinity of 0.5 as the number of zeros at z=-1 increases, as we
would expect.

The simple cases in Examples 8, 9, and 10 were presented in an effort to make
clear how frequency sampling on the amplitude function works. However, the
technique also works for longer, more practical filters, and we will take a look at
several of these.

Example 11a, Fig. 14a shows a normal type of equally spaced low-pass,
calculated as follows:

f=[0:0.04:0.48] (37)
a={111111000000] (38)
[ho,he]=amp(f,a) (39)

AN-337 (23)



h(n) o6}
0.4
0.2 T
ot o@@%ﬁ@%? ‘?J)é@‘?%u@o
0.2}
0 10 20 n

Fig. 14a Example 11a:

A length 25 filter with
one sample at 0.4f

h(n) g6}
0.4}
of P P111? &P .90
S R I
-0.2}
0 10 20 n

Fig. 14b Example 11b:
A length 25 filter with
one sample moved

to 0.39f

[Heelo)|
1 N7
0.5
0
0.2 0.4 olog
2
1 [®)
(o] O
o]
0 Pt
(o]
2eros %&Qdy o]
-1 s
..2'
2 1 0 1 2
| Heel®) |
1 /\
S
) \/\W
0 /\/\/
0 0.2 0.4 olog
2
1 O
Q o}
(o]
0 o
Q
Zeros Q%&Q y o
-1 = o}
2

-2

-1 o 1 2

AN-337 (24)



where we have looked at the odd length option, ho, a length 25 filter. We can
perturb the result slightly by moving one sample, much as we did in Example 6 for
the passband. Here, we will take the sample that occurs at 0.4 in Example 11a and
move it to 0.39 for Example 11b by the following change of one command line:

f=[0.04.08.12.16 .20 .24 .28 .32 .36 .39 .44 .48 ] (40)

with Equations (38) and (39) the same. We find now a very similar filter, with the
exception that the stopband is slightly rearranged. This filter would be an
advantage if we know, for example, that we could expect a strong interfering
component at 0.39fs. Such a component would be completely rejected by
Example 11b, but not by Example 11a.

In the previous Examples 5 and 6, and here in Examples 11a and 11b, we have
taken an existing sample and moved it relatively little to a new, more
advantageous position. Another approach which we might consider would be to
keep the set of existing, equally spaced samples, and just add another sample to
the set. We may be surprised to find that while this does of course cause the
response to be completely determined at the added point, that there can aiso be
drastic changes in the rest of the response.

For Example 12, Fig. 15, we use the command lines:

f=1[0.04.08.12.16 .20 .24 .28 .32 .36 .39 .40 .44 .48] (41)
a=[11111100000O00O0O0 0] (42)
[ho,he] = amp(f,a) (43)

from which we look at the odd case, length 27. (Adding one sample instead of
moving an existing one adds two to the length.) We see here that a wide region
in the vicinity of the two close samples at 0.39 and 0.40 is now forced to be small.
This is perhaps an attractive change in the stopband, but note that the passband
ripple increases. The lesson to keep in mind is that two close samples defined to
have the same amplitude can have a profound effect on flattening in the general
region. This may be good or bad. We certainly need to be aware of it.

Yet another way to use unequal spacing is to use different spacing over
different bands of frequencies. This can work in a manner similar to weighting
different bands with different levels of importance. It can also be full of surprises.
Example 13 (Fig. 16) is entered as:
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f=[0:0.016:0.32, 0.34:0.02:0.5] (44)
a = [ ones(1,15), zeros(1,15) ] (45)
[he,ho] = amp(f,a) (46)

Here the first 15 samples have amplitude 1 and are spaced at 0.016 in frequency.
This is followed by six samples of amplitude 0, these six again spaced at 0.16.
Finally, there are nine more samples of amplitude 0, these spaced at 0.02 in
frequency. It might seem that changing the spacing from 0.16 to 0.20 would be a
relatively minor thing. In fact, we see the closer spacing in the passband
resulting in a relatively smooth response, and this extends a bit into the stopband.
However, this is followed by an extreme blow-up in the stopband centered about
0.4 as the spacing increases from 0.016 to 0.02. Since we expect to improve
some band by using closer spacing, we need to be aware of the associated
decrease in performance in other bands that have wider spacing.

7. USING MORE EQUATIONS THAN UNKNOWNS

In some cases, it is useful to consider a number of frequency sampling points
that is greater than the length of the filter to be designed. For example, if the
filter is of length N, we might still want to take M sample points where M is greater
than N. In such a case, we have more equations that unknowns, and we can not
solve these in the usual way (matrix inversion) but must instead use the least
square procedure or pseudo-inverse. Inthe case where M=N, we can fit the
response exactly to the M points for zero error at each point and zero error total.
For the case of M>N, we expect the curve in general to not go exactly through any
of the specified points. In this case of M>N, in general, there is an error at each
point, and we seek to minimize this error in the least squares sense.

This least square procedure is well presented [2] in terms of the use of a
"pseudo-inverse" and has been applied to the frequency sampling filter design
problem [3]. The LMS program, fsampims.m is quite similar to the other
programs presented above. The phase is set in a similar way, but it is important
to recognize that while the frequency samples divide 2r by M, it is still N, the
length of the filter we end up with, that determines the linear phase term. The
matrix corresponding to the coefficients of the equations is set up in a manner
similar to gfs.m, the program for unequal spacing. Here the samples are equally
spaced, but we must still use the matrix (instead of the DFT) because in general
N:M. The major difference is thus that the pseudo-inverse, (E!E)E!, is used
instead of just E-1.
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PROGRAM 4: fsampims.m

function

Q0 X Z
#Hunonu

3¢ 2¢ 3¢ 32 3L 32 32 e e

i=0:M-1;

h = fsamplms(N,M,f,a,m)

function h = fsamplms(N,M,f,a,m)

(MATLAB filter input format)
length
number of freq. samples
frequency vector on 0-1 with 1 = half the sampling freq.
amplitude vector

B. Hutchins Fall 1995

wi=2*pi*i/M;

----------- generate phase-------~~~-=u-uun

ph=exp(- j*wi*(N-1)/2);

if mod(N,

2)==0;

ps=[ones(1,M/2) -ones(1,M/2)];
ph=ph.*ps;

end

for n=1:M

if wi(n) < f(2)*pi; mask(n)=a(2);

elseif wi(n) > (2*pi-f(2)*pi); mask(n)=a(2);
else mask(n)=a(3);

end

end

if exist('m!)==1 mask=m; end;
H=mask.*ph;

k=0:N-1;

arg=-j*(Wwit*k);
E=exp(arg);

h=(inv(E'*E))*E'*H.';

figure(1);stem(k,h)
MH=abs(freqz(h,1,500));
MH=MH/MH(1);
figure(2);plot([0:.001:.4991 ,MH)
MHDB=db(MH, 120, 20);
MHDB=MHDB-MHDB(1);
figure(3);plot([0:0.001:.499] ,MHDB)

grid

figure(3)

There are several circumstances where we may wish to use an over-
determined set of samples. In the first instance (Example 14), we simply wish to
better define a band or bands by using more samples. In a second instance
(Example 15), we may wish to determine the general order of an FIR filter that has
a magnitude response similar to a particular lIR filter. For example, by taking
amplitude samples from an |IR Butterworth response, we can have the same well-
defined magnitude response with an imposed linear phase replacing the
Butterworth's normal phase. These we will look at one at a time.
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In Example 14a (Fig. 17a), we use the command line:

h = fsamplms(19,19, 2«[0 .25 .25 .5],[1 1 0 0]) (47)

which reverts to an equal spaced case with 19 equations in 19 unknowns. The
result is the same as Example 1, and is used here for reference and to remind us
that the DFT now becomes a special case of the LMS and pseudo-inverse
procedure. As noted, the rejection at the first sidelobe is about -16db. The
contrasting case is Example 14b (Fig. 17b) where we have used:

h = fsamplms(200, 19, 2+[0 .25 .25 .5],[1 1 0 0]) (48)

which gives us 200 samples reducing to a length 19 filter. The resultis a
response with something like -21db rejection of the first sidelobe. Further, and
possibly more importantly, the cutoff region is now somewhat closer to the
specified 0.25 because samples are taken on a finer grid.

Fig. 18a, 18b, and 18c constitute Example 15. In total, this procedure amounts
to the imposition of a linear phase on an IIR Butterworth magnitude. It also can
serve to compare the order of an FIR filter that is required to match the roll-off rate
of an lIR filter. In this procedure, we have started with a 12th order analog
Butterworth low-pass and converted this prototype to an IIR digital low-pass with
cutoff at f /4, using Bilinear z-Transform. The magnitude response of this IIR filter
is then calculated at 500 points and stored to become the input samples for the
frequency sampling filter (using the 'whole' option with freqz to generate both
halves of the response).

For Fig. 18a, we have used:
h = fsamplms(12,500,[0 0.5 .5 1],[1 1 0 0],HB) (49)

where HB is the vector of 500 samples of the Butterworth magnitude. [Note that
numbers specified for the frequency and amplitude vectors, in the [ ] of equation
(49), are irrelevant since they are overridden by the inclusion of the HB
parameter.] Here while we use all 500 samples, we reduce the final result to a
length 12 filter. Thus we have a reasonable comparison of a 12th order lIR vs. a
12th order FIR, with the FIR clearly losing on the magnitude specifications.

Figures 18b and 18c are similar in that the same 500 samples are input, but the
filter lengths are now 25 and 50, respectively. With length 25, the FIR filter looks
a good deal better than the length 12 case. The length 50 FIR filter is getting very
close to the lIR Butterworth. Accordingly, we might suppose that the FIR filter
needs to be something like an order of magnitude longer than the corresponding
IIR to get a roughly equivalent magnitude response. However, here we have used
the cutoff at 0.25f, and this is the easiest case to match. The procedure for
additional study is probably clear.
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8. WEIGHTED LEAST SQUARES

The method of least squares in Section 7 above can be modified to accept a
weight on the error in different bands, or even on individual samples if we wish.
We simply have to determine a weight vector W much as we do an amplitude
vector for each sample. Next, representing W as a diagonal matrix, we can find h
by using (E'W E)'E'W, replacing (E'E)-1Et for the unweighted case, replacing E- for
the case where M=N. An example program, fsampwls.m is shown as Program 5.
Perhaps to our surprise, the actual weighting only works when M>N and only well
when M is something like (at least) twice N. For M=N, the weighting has no effect.
For example, a weight vector of 1000 on the passband and 1 on the stopband will
give exactly the same thing as 1 on the passband and 1 on the stopband (etc.).
No flattening of the passband occurs as a result of the larger weighting. The
reason for this is that when M=N, there is an exact, zero-error solution (the
designed response goes exactly through the desired response). In consequence,
no weighting of this zero error makes any difference.

Choosing M>>N, we can use the weighting vector much as we did the weighting
with integrated least squared error design [4]. If M=N and we need to
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flatten a band, unequal spacing of samples rather than weighting is suggested.
No examples of this method or program are given here.

PROGRAM 5: fsampwls.m

function h = fsampwls(N,M,f,a,w)
% function h = fsampwls(N,M,f,a,w)
%

% Frequency Sampling with Weighted Least Squares
%
% (MATLAB filter input format)
% N = length
% M = number of freq. samples
% f = frequency vector on 0-1 with 1 = half the sampling freq.
% a = amplitude vector
% W = weights
%
% [ Note: M must be greater than N for the weighting to
% work. If M=N then the error is minimized to exactly
% zero for any choice of weighting. ]
%
% B. Hutchins Fall 1995
%
i=0:M-1;
1=2%pi*i/M;
fommmmm oo generate phase--=-----~--------

ph=exp(- j*wi*(N-1)/2)

if mod(N,2)==0;
ps=I[ones(1,M/2) -ones(1,M/2)1;
ph=ph.*ps;

end

%----generate default amplitude and weight vectors--------
for n=1:M
if wi(n) < f(2)*pi; mask(n=a(2);ww(n)=w(1);
elseif wi(n) > (2*pi-f(2)*pi); mask(n)=a(2);ww(nd=w(1);
else mask(n)=a(3);ww(n)=w(2);
end
end
mask;
H=mask.*ph;
ww=diag(ww);

k=0:N-1;
arg=- j*(wi'*k);
E=exp(arg);

h=(inv(E"*WW*E) )*(E ' *ww*H. )

figure(1);stem(k,h)
MH=abs(freqz(h,1,500));
MH=MH/MH(1);
figure(2);plot([0:.001:.4991 ,MH)
MHDB=db(MH,120,20);
MHDB=MHDB-MHDB(1);
figure(3);plot([0:0.001:.4991,MHDB)
grid

figure(3)
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9. A FINAL EXAMPLE

We close with a final example. Here we will use gfs.m, unequal spacing, and
with three bands as:

f=[0 .05 .1 .15 .2 .25 .315 .35 .4 .425 .45 .5 .55 .575 .6 .65 .685 .75 .8 .85 .9 .95] (50)
a=[11 11 1000 .55 .505 5500011 11] (51)

h=gfs(f,a) (52)
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Here we have placed a sample of value zero (that might be expected, with equal

spacing, to be at 0.3) at 0.315, supposedly to null out a component exactly at that
frequency. In addition to the passband from about 0 to 0.2, and a stopband from

about 0.25 to 0.35, we have added a third band of amplitude 0.5 just above 0.4.
Note however that because we have an even length filter, we need to bring this

band down to 0 at the frequency 0.5. Further here, a tighter spacing of

frequencies in this third band results in a flatter response there as compared to

the first two bands.
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Example 16 is illustrated by Fig. 19a, the impulse response; Fig. 19b, the
magnitude of the frequency response; and by Fig. 19¢, the plot of the zeros of the
response. Also shown are the angle (Fig. 19d), the phase (Fig. 19¢e), and the
group delay (Fig. 19f). The impulse response is clearly linear phase, even
symmetry as expected. The magnitude response shows the expected (specified)
features to the accuracy we expect for the length chosen. The zero plot shows
zeros (pairs) corresponding to the specified zero samples (at 0.25, 0.315, and
0.35) but we also get an additional zero (pair) just above 0.25, and the
"automatic” zero at 0.5 due to the even length.
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When we look at the phase, we generaliy have several options. The MATLAB
"angle" function is one of these, which returns the arctan of the imaginary part
divided by the real part of the transfer function. This can be somewhat cluttered
due to resets every 2n. The MATLAB "phase" function tries to (and does)
improve things by trying to "unwrap" the 2z phase jumps. However, as always,
the phase response can be ambiguous.

Less ambiguous and more to the point is the plot of group delay, the negative
derivative of the phase with respect to frequency. Both the angle and the phase
show us that the group delay is flat (the slope is constant) except at certain points
where it is infinite (the zeros on the unit circle). Note also that the group delay is
exactly (N-1)/2=10.5, the specified delay of the linear phase.
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