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1 Pheasant Lane

Ithaca, NY 14850 January 1996
(607)-273-8030

LOW-PASS TO BAND-PASS TRANSFORMATIONS
ANALOG AND DIGITAL APPROACHES

0. INTRODUCTION

In the previous application note, we discussed the conversion of low-pass
filters to high-pass filters by various means. Here we will do some of the same
things for low-pass to band-pass transformations. Again we will find that we can
consider transformations in both the analog and the digital domains. One major
complication is that the order of the filters we end up with will in general be twice
that of the prototype. This is best understood in terms of the diagram of Fig. 1
where we see that a low-pass response, having both a positive and negative side,
is translated upward away from a center about zero to a new center (the response
may also be spread out or shrunk as well). At the same time, a new negative side
(corresponding to the positive side in terms of its requirements) is generated.
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Fig. 1 Low-Pass to Band-Pass

1. ANALOG LOW-PASS TO BAND-PASS

In order to arrive at a basic notion of a low-pass to band-pass mapping within
the s-plane, we will look at a simple low-pass to band-pass conversion at the
component level. Fig. 2a shows our familiar first-order low-pass R-C filter. We
can convert this easily to a band-pass by putting an inductor in parallel with the
capacitor (Fig. 2b).
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The transfer function of the band-pass is obtained from the voltage divider:
Tg(s) = [sL/(1+s2LC)] /[R + sU/(1+s2LC)]
=(s/RC)/ [s?2 + (0,,/Q)s + 0] 4]
where the frequency of maximum response (peak) is:
on2=1/LC (2)
and:
Q = R(C/L)12 (3)

This puts the result in the form of a standard band-pass filter. The component
substitution has resulted in a second-order band-pass based on a first-order low-
pass, as suggested in the introduction. Note that when s = jo,,, we find that
Tg(s)=1. This is consistent with our physical understanding of the L-C parallel
circuit having infinite impedance at the frequency o=(LC)"2, in which case there
is no current flowing through the resistor R, and hence no voltage drop from input
to output at that frequency. The above analysis is perhaps abbreviated and is
mainly for orientation. It is not essential for what follows, which is based upon the
component substitution.

We see that the substitution of a parallel combination of a capacitor and an
inductor for a capacitor suggests the impedance substitution:

1/s|C  <— (1/sgC)(sgL) / [ (1/sgC) + sgL ] (4)
Bringing in the o, notation, we can rewrite equation (4) as:
sp < (o’ +sgl)isg (5)

This is almost the standard form of the substitution that is generaily employed.
Here we will add one more parameter, og, as:

Another way to write this is as:

0gSy < (o’ + sg?)isg (7)
Here while we have written oy as though it were a radial frequency with units of
inverse seconds, it probably is better thought of as a dimensioniess scaling factor
that relates width in the low-pass plane to width in the band-pass plane. Indeed,

we will treat it as the bandwidth of the band-pass filter.
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If we multiply out equation (7) and solve for sg, we get:

which is nothing more than an application of the quadratic formula. We note the
* sign which gives us two value of sg for each's_. (Note that we end up with pairs
of poles at the same angle in the s-plane.) This again shows the doubling of the
order that we expect in going from low-pass to band-pass. Note also that the
quantity inside the square root of equation (8) is already, in general, complex.
Accordingly, any program we write must be able to handle this possibility.

Program 1 below, abp.m, is a MATLAB™ program for an analog band-pass.
This program has only four parameters to specify. The specification begins with
the order of the prototype analog low-pass, N. The resulting band-pass will have
twice this order, 2N. The second parameter, r, is a reduction factor for the real
part of the Butterworth poles. The design of the low-pass prototype begins with a
Butterworth low-pass. This Butterworth low-pass may of course be used as is for
a flat passband, or it can be converted to a Chebyshev (equi-ripple) low-pass. The
conversion to Chebyshev is a matter of multiplying the real part of all the
Butterworth poles by some reduction factor r where 1>r >0. To keep
Butterworth, r is specified as 1. While there is a mathematical relationship
between the ripple and the reduction factor r, trial and error is certainly practical
for this case, especially given that ripple is something we are willing to tolerate
rather than something we actually want. Perhaps surprisingly, r needs to be
relatively small for significant ripple. For our example, r = 0.3 gives slightly less
than 10% ripple (Fig. 3c). The remaining two input parameters are the lower and
upper cutoff frequencies of the band-pass filter. Note that we use these to
generate the parameters o, and og that we need to implement equation (8).

Fig. 3 shows the graphical results of a run of the program using the command
line:

[bp,bz,bd,bn]=abp(5, .3, 1, 2.5) (9)

The output parameters of the function are the band-pass poles, the band-pass
zeros, the band-pass denominator, and the band-pass numerator, as well as the
plots shown. The low-pass plots are shown mainly for reference purposes. In
the case of Butterworth, and to a good approximation for the case of Chebyshev
low-pass prototypes, the low-pass cutoff will be close to 1.0 (Fig 3c).
The doubling of the order as we go from low-pass to band-pass is evident from
Fig. 3b and Fig. 3d. In Fig. 3b, we have a pole/zero plot for the analog band-pass.
Note that we now have 10 poles total, in two "arrays" of five each, displaced in the
imaginary dimension. (Keep in mind that Fig. 3a and Fig. 3b represent the s-
plane). Further, we see that five zeros have appeared at s=0. Previously the low-
pass had five zeros at infinity. The band-pass has five zeros at infinity as well.
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PROGRAM 1: abp.m - ANALOG BANDPASS DESIGN

function [bp,bz,bd,bnl=abp(N,r,wl,wu)
% function [bp,bz, bd,bnl=abp(N,r,wl,wu)

%

% ANALOG BAND-PASS

%

% N = order of low-pass prototype

% (order of band-pass = 2N}

% r = reduction factor for Butterworth poles
% wi = lower band-pass cutoff

% Wu = upper band-pass cutoff

%

% example: [bp,bz,bd,bnl=abp(5,.3,1,2.5)

% Gives a 10th-order bandpass with about
% 10% ripple with passband from 1 to 2.5.
% B. Hutchins Fall 1995

wm=sqrt{wu*wl); % max (center) frequency
wb=wu-wl; % bandwidth

% get Chebyshev low-pass prototype
sa=pi/N;
for k=1:N
poleang=pi/2 +(k-1)*sa + sa/2;
Lp(k)=r*cos(poleang) + j*sin(poleang);
end
lp=ip.!
figure(1);subplot(221)
pltot(real(lp), imag(lp),'x")
axis([-1.2 .2 -1.2 1.21);
grid
title(t'Analog LP Polest)

% Low-Pass Magnitude response
ld=poly(lp); % low-pass denominator
subplot(223)

w=0:.01:2;
H=abs(freqs({zeros(1,N-1),11, ld,w));
H=H/H(1);

plot(w,H)

axis([-0.2 2 -.1 1.51)

grid

title('Low-Pass!)

% Low-Pass Poles ---> Band-Pass Poles/Zeros

Lip=length(lp)

%  two BP poles and one zero for each LP pole

for k = 1:llp
bp(k)= Lp(k)*wb/2 +( (lp(k) 2*wb™2 - 4*wum"2)7(1/2) )/2;
bp(lip+k)= Lp(k)*wb/2 - (Ip(k) "2%wb™2 - 4*wm 2)"(1/2) )/2:
bz(k)=0;

end

subplot(222)

plot(bp, *x*')

hold on

plot(real(bz), imag(bz),'o")

grid

axis([-1.2 .2 -~wm-wb-1 +wmtwb+1]1)

title('Band-Pass Poles/Zeros')

hold off

AN-336 (4)



% Band-Pass Magnitude Response

bn=poly(bz); % band-pass numerator
bd=poly(bp); % band-pass denominator
w=0:.01:2%wum+2%ub;

subplot(224)

HB=abs(fregs(bn,bd,w));
HB=HB/abs(freqgs(bn,bd,wm));
plot(w,HB)

axis([-.1 wmtwb+1 -.1 1.51);
grid

title('Band-Pass')
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Fig. 3 Analog Low-Pass to Band-Pass
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By looking at the magnitude response of the band-pass, Fig. 3d, we also see
that the order is doubled, since the band-pass response has five full ripples while
the low-pass has 2.5 ripples. Another way to look at this is to say that the low-
pass has five full ripples (five poles) when we count the negative side of the
response not shown, and the band-pass has 10 full ripples (10 poles) when both
sides of the response are considered. In this sense, the entire low-pass
response, which is originally centered about zero, can be considered to have
been translated upward in frequency (and stretched or compressed) and then
replicated on the negative side (Fig. 1). Note that the upper and lower cutoff
frequencies are pretty much as specified in the function call.

If we are thinking in frequency units, the units here are radians/second. Thus
the original low-pass has a cutoff of 1 rad/sec, and the band-pass has a lower
cutoff at 1 rad/sec and an upper cutoff of 2.5 rad/sec. This is important if we are
considering the transfer function generated from bn and bd. Of course, these
analog filters are easily scaled to any frequencies necessary.

2. 1IRDIGITAL LOW-PASS TO BAND-PASS

One approach to designing digital band-pass filters would be to use a direct
design such as any one of the familiar FIR design methods and programs.
Another would be to convert a suitable analog low-pass bprototype to a
corresponding analog band-pass using the methods of Section 1 above, and then
form the corresponding digital, lIR, band-pass using Bilinear z-Transform. The
method discussed here however is a transformation method from a digital low-
pass to a digital band-pass [1-3].

This transformation is a mapping from a low-pass z-plane (z,) to a band-pass
z-plane (zg):

21 «— - (zg'+ayzgl+ay)/(azg? +a,zgt + 1) (10)
where:

a, = -2aK/(K+1) (11)

a, = (K-1)/(K+1) (12)

a = cos[(o,+o)/2] / cos[{e-,)/2] (13)

K = cot[{o,-o,)/2]tan(o/2) (14)
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PROGRAM 2: dbp.m - DIGITAL LOW-PASS TO BAND-PASS

function [bp,bz,bn,bd]=dbp(N,r,wc,wl,wu)
%  function [bp,bz,bn,bd]l=dbp(N,r,wc,wl,wu)

%

%  DIGITAL BAND-PASS FROM DIGITAL LOW-PASS

%

% bp =  band-pass poles

% bz =  band-pass zeros

% bn =  band-pass numerator

% bd =  band-pass denominator

%

% = order of low-pass (analog or digital) prototype
% r = reduction factor for real part of Butterworth poles
% frequencies relative to sampling frequency = 1
% wC =  low-pass cutoff (0 to 0.5)

% wl = lower bp cutoff (0 to 0.5)

% WU = upper bp cutoff (0 to 0.5)

%

% N we wl wu

% example: [bp,bz,bn,bdl=dbp(5,.3,.10,.12,.30)

% Designs a 10th-order digital Chebyshev with about 10%

% ripple and with a bandwidth from 0.12 to 0.3 times the

% sampling frequency.

% B. Hutchins

sa=pi/N;
for k=1:N
poleang=pi/2 +(k-1)*sa + sa/2;

Fall 1995 (rev. Spring 1996)

% Compute
% analog Butterworth
% poles and reduce

p(k)=r*cos(poleang) + j*sin(poleang); % real part for

end

ws=2%pi;
wewarp=(ws/piY*tan(pi*wc/ws);
p=p*wcwarp;

% Chebyshev low-pass

% Bilinear z
% to digital
% low-pass

fs=ws/(2*pi); % poles
Lp=(2*fs + 2*pi*p)./(2*fs - 2*pi*p); %
ln=[1 1]; % Add Zeros
for k=1:(N-1) %

tn=conv(ln, [1 11); %  Low-pass numerator
end %
lz=zroots(in); %  Low-pass zeros
ld=poly(ip); %  Low-pass denominator
% PLOT DIGITAL LOW-PASS
figure(1)
subplot(221)
pzplot(in,id)

axis([-1.1 1.1 -1.1 1.11);
title('Low-Pass Poles/Zeros')
subplot(223)

HiL=abs(freqz(ln, ld,500));
HL=HL/HL(1);
plot([0:.001:.4991,HL)
axis([-.05 .5 -.1 1.51);

grid
title('Low-Pass Magnitude')
% END OF LOW PASS DESIGN

wu=2*pi*uu;
wl=2%pi*ul;
we=2*pi*wc;
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% Conversion Parameters

alpha = cos((wut+wl)/2) / cos({wu-wl})/2);
k = cot((wu-wl)/2)*tan(uc/2);

al = -2*alpha*k/(k+1)

a2 = (k-1)/(k+1)

% Compute Band-Pass Poles/Zeros
Llp=length(lp);

tpi=lp. (-1);

for m=1:1llp

rad=sqrt(al " 2*(lpi(m)+1)°2 - &*(a2*lpi(m)+1)*(lpi(m)+a2));
bp(m) =(-al*(lpi(m)+1)+rad)/(2*(a2*lpi(m)+1));
bp(m+LIp)=(-al*(lpi(m)+1)-rad)/(2*(a2*Lpi(m)+1));
bz(m)=1;
bz(m+llp)=-1;

end

bp=bp."(-1);

bn=poly(bz};
bd=poly(bp);

% PLOT DIGITAL BAND-PASS
subplot(222)

pzplot(bn, bd)

axis([-1.1 1.1 -1.1 1.11);
title('Band-Pass Poles/Zeros')
subplot(224)
HB=abs(freqz(bn,bd,500));
m=round(500*sqrt(wu*wl)/pi)
HB=HB/HB(m);
plot([0:.001:.4991,HB)
axis([-.05 .5 -.1 1.51);

grid

title('Band-Pass Magnitude*)
figure(1)

where o, and o, are the lower and upper cutoff frequencies of the digital band-
pass, given in terms of a sampling frequency of 2x. [The actual numbers input to
our program will be on the interval 0 to 0.5 as noted in the heading to the program.
The multiplication by 2r is internal.] The parameter o, is the cutoff frequency of
the prototype low-pass filter, and in general makes little difference to the final
design. As with the analog-to-analog mapping, the low-pass is perhaps most
interesting as a point of reference. Some users may prefer to modify the program
with o, fixed. In such a case, a relatively small value of o is suggested.

It remains to solve equation (10) using the quadratic formula, which gives us zgin
terms of z_ and the constants:

The actual program here is Program 2, dbp.m, as shown. The program begins

with the design of an analog low-pass prototype, as in Program 1. This prototype
is then converted to a digital low-pass using Bilinear z-Transform, giving the
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Fig. 4 Digital Low-Pass to Band-Pass

digital low-pass prototype to be converted to digital band-pass. The actual band-
pass design is a straightforward implementation of equations (10) through (15).

Figure 4 shows an example corresponding to the suggested example in the
heading to the program:

[bp,bz,bn,bd]=dbp(5,.3,.10,.12,.30) (16)

This begins with our familiar 5th-order low-pass with 10% ripple. The digital low-
pass has a cutoff of 0.1 (0.2r actually), and as noted, is mainly of concern here for
the illustration. The actual band-pass is to have a lower cutoff at 0.12 (0.24=) and
an upper cutoff at 0.3 (0.6x).

AN-336 (9)

olo



The band-pass, Fig. 4b and Fig. 4d is similar to the analog case (Fig. 3) except
here the two replications of the low-pass positioned are with reference to the unit
circle, not the jo-axis. From the pole/zero plot we see the ten poles. There are
also 5 zeros at z=1 (corresponding to the 5 zeros at s=0 for the analog case).
Here, in addition, we have 5 zeros at z=-1. These are the 5 zeros that were at s=w
in the analog case, transformed exactly as we would have gotten by Bilinear z-
Transform of the analog band-pass.

3. FIRDIGITAL LOW-PASS TO BAND-PASS?

Above we discussed the fact that FIR design methods for band-pass digital
filters (and for most other types) are readily available, so we may well be content
to use our low-pass to band-pass transformations only for IIR filters where they
work well. But, do they in fact work for FIR? On the one hand, we might well note
that FIR filters are a special case of IIR filters, and accordingly, a methods that
works for IR should also work for FIR. On the other hand, we might also note that
lIR filters of a given order have poles as well as zeros, and these in effect
constitute a doubling of the number of manipulable design parameters, a fact that
could well indicate a significant difference. In fact, without the poles, the FIR low-
pass to band-pass transformation is extremely limited (the poles of the FIR at z=0
of course have no effect on the response).

With some special setup, we can manipulate the FIR low-pass to band-pass
transformation into working; pretty much as a curious illustration. As in many
cases, it is useful to begin with the simplest "toy filter" that we can come up with.
This is the two-tap moving-average FIR low-pass (Fig. 5). Here we have a transfer
function:

H (z) = 1/12 + (1/2)z (17)
with corresponding magnitude response:
[H, (el®)] = cos(w/2) (18)

Fig. 5a shows the filter's structure, Fig. 5b the magnitude response, and Fig. 5¢
shows the zero at z=-1 in the z-plane. Note that we might choose |H, (ei®)|=1/2 as
a defined cutoff point (somewhat arbitrarily). This occurs [see equation (18)] at
o=2n/3 (i.e., o/o=1/3).

Having familiarized ourselves with this low-pass setup, we need to imagine
what could happen if we try to take the low-pass zero through the low-pass to
band-pass transformation used above. We simply get two zeros instead of one.
Where should these two zeros end up? Clearly we would have to have two real
zeros, or a complex-conjugate pair of zeros. A pair of complex conjugate zeros is
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Fig. 5 Prototype FIR Low-Pass
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Fig. 6 Transformed to Band-Pass

clearly suitable to notch-like responses - pretty much the opposite of a band-pass.
Accordingly, we consider two real zeros, and one obvious choice would be one
zero at z=-1 and the other at z=+1 (Fig. 6).  This filter has a transfer function:

Hg(z) = (1/2)(1 - W) (1 + zY) = 1/2 - (1/2)z2 (19)
with corresponding magnitude response:
[Hg(e®)] = sin(o) (20)

Fig. 6a shows the filter structure, Fig. 6b shows the magnitude response, and

Fig. 6¢ shows the zeros at z=-1 and at z=+1. Note that if we keep our cutoff value
of |Hg(el®)] = 1/2, we see from Fig. 6b that we have o,=0 /12 and o ,=50 /12 (at /6
and at 5x/6 for a sampling frequency of 2x).

Now, suppose that we had chosen these as the start of our design. That is, we
have not yet looked at the above possibilities as outlined in Fig. 5 and Fig. 6.
Thus we have a low-pass with a cutoff o =27/3 and we want a band-pass with
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cutoff at n/6 and at 57/6. We use the transformation procedure for digital low-
pass to digital band-pass as used above. Equations (13), (14), (11) and (12) yield:

a=0 (21a)
K=1 (21b)
a, =0 (21¢)
a,=0 (21d)

so we are clearly in the realm of some special case. Transforming the zero at z =
-1 using equation (15) gives:

zg=+1 (22)

the result we guessed, which suggests that this works, although we stacked the
deck for sure.

Perhaps another way to see what has happened here is to consider how the
impulse response of the low-pass, equation (17) can be manipulated to form the
impulse response of the band-pass, equation (19). It is neither obvious nor well
demonstrated by this short filter, but nonetheless correct, that we can convert the
low-pass to a band-pass by multiplying the low-pass impulse response by (-1)"
and then zero-padding the result. This is the same as modulating the low-pass
response to center it around one quarter of the sampling frequency (typical
samples: ...010-1010 -1... ). The zero-padding doubles the length of the
time-domain description and thus compresses the width of the frequency-domain
description by a factor of two, while at the same time rotating it by 90° on the unit
circle. Hence we understand the change from cos(w/2) to sin().

While it is possible to continue to investigate special cases of this attempt to
use the digital type-transformations on an FIR response, little more in the way of
systematic calculation or practical insight results, and we again would likely just
recommend direct design FIR programs.
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