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LOW-PASS TO HIGH-PASS TRANSFORMATIONS:
ANALOG AND DIGITAL APPROACHES

0. INTRODUCTION

The practice of teaching filter design within a digital signal processing course
often involves low-pass filter examples to the virtual exclusion of all other types.
Indeed, the idea that low-pass prototypes may be converted to other types (high-
pass, band-pass, band-reject, etc.) is perhaps so well known that we neglect to
mention it! There are numerous ways in which low-pass filters can be converted
to high-pass filters, some intuitive, and some formal.

1. ANALOG LOW-PASS TO HIGH-PASS

When we speak of an analog filter, it is probably either a passive filter (with
resistors R, capacitors C, and inductors L), or an R-C active filter that we are
talking about. It is often the case with an R-C active filter (a network with only
resistors, capacitors, and op-amps) that one need merely switch the positions of
appropriate resistors and capacitors to convert low-pass to high-pass.

A couple of simple examples will help make this general procedure clear. We
can start with the simple R-C low-pass as seen in Fig. 1. (The op-amp follower is
added to correspond as closely as possible to actual practice.) In the simplest of
terms, this is a low-pass because the capacitor shorts high frequencies to ground.
Analytically, we can derive the transfer function of the network:

VoulsWV,,(s) = T,(s) = (1/sC) I (R + 1/sC) = 1/(1+sRC) (1)

which is clearly a first-order low-pass.
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One method of obtaining a high-pass would be to substitute an inductor for the
capacitor of Fig. 1 (giving Fig. 2a). Here we would say that the inductor shorts
low-frequencies to ground. The analysis is similar to that of Fig. 1, keeping in
mind that the impedance of the inductor is sL. Since we are usually interested in
keeping inductors out of our circuits, it is useful to divide both the impedances in
the voltage divider of Fig. 2a by s, effective making the resistor a capacitor and
the inductor a resistor (Fig. 2b). This network has a transfer function:

Ty(s) = sRC/(1+sRC) (2)

which has the same pole as the low-pass (at -1/RC) but now a zero at s=0 as well.

R ' 1/ke C
L jo R
= . ) =
TH(S) = gL./(R+sL) _1/RC TH(S) = gCR/(1+sCR)
Fig. 2a Fig. 2b

The comparison of Fig. 1 and Fig. 2b is an instance of how resistors and
capacitors can be interchanged to change low-pass to high-pass. A second
example is offered by Fig. 3a and Fig. 3b which are second-order active networks
for low-pass and high-pass respectively. This structure is often referred to as a
"Sallen-Key" filter or a "Positive Gain Voltage-Controlled Voltage-Source - Positive
gain VCVS." Note that the VCVS is a fancy name for a voltage amplifier of gain K
=1+R,/R;. Here while resistors and capacitors are interchanged, note that the
resistors in the voltage divider of the VCVS of course remain resistors. The two
transfer functions are:

T, (s) = (KIR2C2) / [ s? + (3-K)s/RC + 1/R2C?] (3a)

Ty(s) = Ks2 | [s2 +(3-K)s/RC + 1/R2C?] (3b)

In our change from Fig. 1 to Fig. 2a, we substituted, in effect, s for 1/s, an
inductor for a capacitor. It is important to note that while we generally
interchange resistors and capacitors in practice, we are still substituting s for 1/s,
since both elements (resistors and capacitors) are changed by opposite powers
of s. Accordingly, we can think of a mapping of low-pass to high-pass poles as:

Sy = 02ls, (4)
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Fig. 3a Sallen-Key Low-Pass Fig. 3b Sallen-Key High-Pass

For the moment, note that the v,? is necessary just to make the units come out
right. We shall see shortly that this is important for identifying the exact response
relationships between the low-pass and corresponding high-pass. So far, we
have just said that substituting elements gives us a high-pass rather than a low-
pass. In fact, for first- and second-order filters, as we have used above so far, the
type-conversion and associated responses are uncomplicated. The pairing
remains uncomplicated for higher order filters only if the filter's response is
Butterworth (because all the poles of the Butterworth are on the same radius). All
this should become apparent as we proceed below.

Given a set of analog low-pass poles, we want to find the corresponding analog
high-pass poles using equation (4). An analog low-pass pole would be at
s .= o_+jo, so the corresponding high-pass pole would be at:

sy=0gl(o o) = [02(c 2+e d)](o- jo,) (5)

Note the following: First, the parameter o, is going to be the same for all poles
corresponding to the particular filter. Second, the radii of the low-pass poles,

(o 2+0 2)V2 for each pole, can in general be expected to be different. (Butterworth
filters are common and popular, and are the exception here. For Butterworth, all
(0,240, 2)V2 will be the same, and usually we take o,=(c ?+0 2)"2 since this is the
-3db or "half power" frequency for Butterworth).

To get a better idea of how the transformation of equation (5) should work,
consider the following example. We start with an order 5 analog Butterworth
low-pass with poles on a unit radius, and then reduce the real part of its poles by
a factor of 0.22, giving Chebyshev poles for a filter with a ripple approaching 0.8
(see Fig. 4):

-0.0680 + 0.9511j
-0.1780 + 0.5878j
-0.2200 (6)
-0.1780 - 0.5878;j
-0.0680 - 0.9511j
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We then choose 0,2=2 so that the high-pass poles are, from equation (5):
-0.1496 - 2.0922j
-0.9438 - 3.1168j
-9.0909 (7)
-0.9438 + 3.1168j
-0.1496 + 2.0922j

The corresponding low-pass and high-pass transfer functions are, respectively:
T(s)=11/(s% + 0.7119s4 + 1.4429 s3 + 0.6685s% + 0.4254s + 0.0754) (8a)

Tu(s) =s5/(s5+11.28s* + 35.45s% + 153.02s2 + 151.00s + 424.19) (8b)

The high-pass response is seen in Fig. 4.
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Fig. 4 A 5th-order Low-Pass is converted to a 5th-order High-Pass. Here o, =
V2 and this is indeed the frequency where the two responses cross. In
a practical case, we might better choose o, = 1, since the cutoff
frequency (-3db) is close to 1. Here to avoid clutter we have chosen a
higher value.
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2. DIGITAL LOW-PASS TO HIGH-PASS: INTUITIVE METHODS

One intuitive method to try, for converting a known low-pass design to a
corresponding high-pass, would be to subtract the low-pass from 1. Thatis:

Hyz) = 1 - H(2) (9a)

so that:

hy(n) = Z{1} - hy(n) = 3(n) - hy(n) (9b)

This provides a simple recipe for conversion. An alternative method to try would
be to modulate the response so that it is centered about half the sampling
frequency rather than about zero. This we can do by multiplying h(n) by (-1)".
An alternative way of viewing this is that the z-plane is flipped, or turned over,
rotated about the imaginary axis. The connection is:

hy(n) = (-1)"h(n) (10a)
so, looking at the z-Transform we have:
e o] [e 0}
Hy(z)=Z hy(n)zh = Z(1)"h(n)z" =
n=- n=-co
o0
2 h(n) (-z7)" =H(-2) (10b)
n=-o

from which, we easily see the flipping of the z-plane, substituting -z for z.

Both of these methods give us a high-pass from a low-pass, but in general, they
give us different high-pass results. Fig. 5 shows the subtraction method, while
Fig. 6 shows the substitution of -z for z method (multiplying by -1"). Here we have
started with a prototype length 41 Parks-McClellan low-pass h;(n) and H (0), Fig.
5a and Fig. 5¢c. The filter was designed for a cutoff frequency of about 0.15 times
the sampling frequency by declaring a "don't care" band from 0.14 to 0.16.

Here we have subtracted 1 from the center tap of the low-pass, thus obtaining
-h,(n) from equation (9b). This perhaps better shows the fact that the impulse
response is identical to that of the low-pass except at the center value. (The
magnitude response is the same for either case.) Note that the high-pass (Fig.
5d) has this same cutoff frequency (0.15). From Fig. 5b, we see that it is only the
center term of the impulse that is altered (it becomes negative, in fact). Fig. Seis
the zero plot for the low-pass (one zero at +3.328 is not plotted) while Fig. 5f
shows the corresponding zero plot for the high-pass (one zero at -3.328 not
shown).
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Fig. 6d) instead of at 0.15.
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Fig. 5 In (a) we have the original low-pass impulse response, while (b) shows
the high-pass impulse response (altered middle term). Here the low-pass
(c) and the high-pass (d) sum to unity. The zeros (e and f) are not simply a
flipping of the z-plane.

Fig. 6 in contrast has a high-pass cutoff at 0.35 the sampling frequency (see
Fig. 6a and Fig. 6¢ repeat the corresponding low-pass

we used in Fig. 5. In Fig. 6b we see the multiplication of h (n) by -1°. Note that
the two responses are symmetric about 1/4 of the sampling frequency. Perhaps
most revealing, we see that the zero plots (Fig. 6e and Fig. 6f) are reflections of

each other, across the imaginary axis.
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Fig. 6 In (a) we have the original low-pass impulse response, while (b) shows
the high-pass impulse response (terms multiplied by -1"). Here the low-pass
(c) and the high-pass (d) are symmetric about 1/4 the sampling frequency.
The zeros here (e and f) are simply a flipping of the z-plane.

Above we have applied our low-pass to high-pass tricks to FIR digital filters,
and this has revealed the essential workings of these methods. While this is
clearly of some accademic interest, it is perhaps less clear that we need these
methods in practice. Indeed, the same programs that allow us to design low-pass
FIR filters readily accept high-pass specifications (even length possibly being a
problem), and many other filter specifications.
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It is interesting to consider the application of the modulation technique for the
case of even length. We know that we can easily have an even length low-pass,
but we can't have an even length high-pass. So what happens when we take an
even length low-pass prototype and convert it? If we try this, we get a perfectly
good-looking magnitude response. However, the filter does not have the phase
properties of the original design. For example, suppose the even order low-pass
is length 4 as:

h, (0) = 1/4 h, (1) = 1/4 h,(2) = 1/4 h,(3) = 1/4 (11)

which is a linear-phase FIR filter with a delay of 1.5. To get the corresponding
high-pass, we get:

h,,(0) = 1/4 h,(1) = -1/4 hy(2) = 1/4 h,(3) = -1/4 (12)

This impulse response is anti-symmetric about a delay of 1.5, and thus represents
a delay of 1.5 with an added or subtracted additional phase of 90°. The response
is high-pass as expected.

The method of subtracting the response from 1 does not work well for the case
of converting an even-length low-pass to an even-length high-pass. This is
because this 1 is supposed to be subtracted from the center tap, and this filter
has no center tap.

3. 1IRFILTERS

We have above discussed conversion of low-pass to high-pass in the context
of FIR filters, and suggested that this conversion may be sometimes less useful
because the desired high-pass filters can often be designed directly. This
continues to be true of IIR filters to some degree, although the differences here
are well worth discussing.

Since most of the popular lIR digital filter design methods involve first finding a
prototype analog filter, and then converting it (most often with Bilinear z-
Transform method) to a corresponding digital filter, it is clear that the methods of
analog low-pass to high-pass in Section 1 can be useful. It will be seen that the
modulation method used for FIR filters will remain useful, although the subtraction
method will not. Let's look first at the modulation method.

It remains true that we can change a low-pass to a high-pass be multiplying the
impulse response by -1".  In the FIR case, we could easily see how to apply this
idea since the filter coefficients and the impulse response were one and the same.
It turns out that the coefficients of an IIR filter, in both the numerator and the
denominator can be alternated in sign to convert low-pass to high-pass. This is
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probably not obvious until we consider that multiplying the impulse response by

-1" was the same as substituting -z for z (equations 10a and 10b). An example
will be most useful here.

Lets start with a fifth-order Butterworth low-pass analog filter and reduce the
real parts of the poles by multiplying them by 0.3, giving us a Chebyshev response
with about 9% ripple. We then use Bilinear z-Transform to change this to a digital
filter with cutoff at 0.2 times the sampling frequency (Fig. 7a).
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Fig. 7 In (a) we see the original low-pass magnitude response, with the
pole/zero plot shown in (c) and the impulse response in (e). By changing
the sign of every other coefficient in the numerator and the denominator we
obtain a corresponding high-pass (b, d, and f). Indeed, every other term of
the impulse response is inverted.
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The transfer function is:

H (z) = (25 + 524 + 1023 +10z2 + 52 + 1) (13)
25 - 2.2873z* + 3.083023 - 2.490522 + 1.2216z - 0.2941

Form our discussion, the corresponding high-pass transfer function will be
obtained by flipping the signs of every other term of the numerator and
denominator (the starting point is abritrary - just resulting in an overall inversion).

Hy(z) = (25 - 5z% + 1023 1022 + 5z - 1) (14)
25+ 2.2873z4 + 3.083023 + 2.490522 + 1.2216z + 0.2941

This results in the magnitude response shown in Fig. 7b. By comparing the
pole/zero plots (Fig. 7c and Fig. 7d) we see the filpping of -z for z. The impulse
responses are also shown, computed directly from the transfer functions. We find
that indeed, the high-pass has every other term inverted, relative to the low-pass.

The subtraction method, as stated above, does not work for lIR. This is
because with it we would have to make special efforts to get phases to match. Put
another way, the 1 from which we are subtracting H,(z) is not just a number 1, but
rather a magnitude of 1 with a phase that would have to be the same as that of
H (z). This is probably unduly difficult because the phase is not linear, nor is it
represented by an integer delay. In the FIR case, things did work because we
generally had linear phase and a center term (at integer delay) to modify.

4. FILTER TYPE TRANSFORMATION BY SUBSTITUTING FOR Z

We are familiar with the idea of converting an analog prototype to a
corresponding digital filter using Bilinear z-Transform by means of a substitution:

s <— (2/T)[(z-1)/(z+1)] (15)

A comprehensive method for converting digital filters of one type to another type

by way of substituting within the z-plane is well established [1-3]. Here we will
use an intuitive derivation of the form of this substitution for the digital low-pass
to digital high-pass case.

To do this, let's consider the design of digital filters from analog prototypes,
using Bilinear z-Transform. We will simply use the first-order low-pass (Fig. 1)
and high-pass (Fig. 2b) as prototypes.

Starting with equation (1), using equation (15) we arrive at:
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Hi(z) =T (s)

s < (2M)[(z,- 1)z +1)]
= (TI2RC)(z,+1) / [z, (1+ TI2RC) + (-1+TI2RC)] (16)

And starting with equation (2b), we arrive at:

Hy(zy) = Ty(s)

s < (2M)[(zy-1)(zy+1)]
= (zy-1) 1 [z4(1+T/I2RC) + (-1 +T/2RC)] (17)
These are familiar digital transfer functions and familiar digital filters. Note

however that we have added a subscript L or H on to z. This means that we can
write something that would otherwise make no sense:

Hy(z\) = Hy(zy) (18)
This is only possible of course if z, and z, are different. Equation (18) will let us
find the relationship between z, and z,,, at least for this case. It will be
convenient to use the notation:

o =T/2RC (19)
from which equation (18) can yield:

zy = [ -z (1+a?) + (1-a2)] / [ z (a2-1) + (1+a?) ] (20)
or more simply:

zyt=-[z 1+ a]l/[1+az "] (21)
where :

a = (a2-1)/(a2+1) (22)

Equation (21) is in fact the exact form for the substitution suggested by the formal
methods [1-3].

One immediate consequence of this intuitive derivation, which we might
properly infer, is that when we are considering digital and analog filters to be
related by the Bilinear z-Transform, it does not matter whether we do the low-pass
to high-pass transformation at the analog level or at the digital level. That is, we
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might design the analog low-pass, convert it to an analog high-pass, and then
Bilinear z-transform to a digital high-pass. Alternatively, we can Bilinear z-
Transform the analog low-pass, and then convert the resulting digital low-pass to
a high-pass using equation (21). The results will be the same.

Note that there is a special form for equation (21) for the case of a=0, which
gives us:

This is a valid special case, and is the modulation method that we have already
discovered and used (changing the signs of every other term in the numerator
and the denominator).

For a more general understanding of the parameter a, we will resort to the
references [1-3] and some examples. Basically, the transformation in equation
(21) is an all-pass transformation, and is expected to be stable as long as |a|<1.
The references give an equation for a as follows:

a = -cos[(o.+ 0.)/2] | cos[(o.- 0. )2] (24)

where o is the "cutoff” frequency of the low-pass filter, and o' is the "cutoff"
frequency of the corresponding high-pass filter. These frequencies are defined
for T=1 (f=1, o =2}, so they are limited to the interval 0 to =. Some discussion
as to what is meant by "cutoff" is probably necessary.

We have a good general understanding of a filter's cutoff frequency as being a
frequency in the transition region between a passband and a stopband. For filters
with a sharp enough cutoff region, we expect to make little error no matter how we
actually define this cutoff. For example, a "half-power" point, 1/72, which is
approximately but not exactly -3db is often chosen. Inthe cases of passband
ripple, there can be some ambiguity about whether we measure down from the
peaks, valleys, or some intermediate passband level. As long as the transition is
very sharp, it probably matters little which reference level we use, or even if we
choose a different cutoff criterion (-10db, for example). This is reassuring.

However, with regard to the present question of finding a cutoff for equation
(24), things are even more forgiving. We are actually concerned with finding a
particular frequency and corresponding response feature for the low-pass, and
then specifying the frequency where we want this same response feature to occur
for the high-pass. It does not need to be a "cutoff" frequency, but could be any
feature, the peak of a second ripple for example. In fact, this is exactly the same
thing we encounter when we do a Bilinear z-Transform warping. We say we are
matching a "cutoff”, but it is often something else, such as a peak frequency in
the case of a band-pass design. The examples below should help to make things
more clear.
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Fig. 8a shows a prototype digital low-pass (same as Fig. 7a). Figures 7b, 7d,
7e, and 7f show high-pass filters derived from the low-pass using equation (21)
with values of a of -0.9, -0.5, 0, and 0.5 respectively, as indicated. This clearly
shows the general progression, the cutoff frequency moving upward as a goes
more positive.

To make the point with regard to "cutoff* being somewhat arbitrary in definition,
note that we can choose the cutoff as magnitude 0.7 for example, and plug the
numbers back into equation (24). Using Figures 8a and 8c for example, we get
©=0.1 .27 and 0.'=0.257.2x and we find that a is back-calculated from the graph
as -0.493, close to the original value of -0.5. Alternatively, suppose we choose as
the "cutoff" frequency the top of the second ripple, at about 0.06.2x in Fig. 8a and
at about 0.34.2x for Fig. 8d. Again plugging into equation (24) we get a = -0.485,
again close to -0.5.

Note that as long as the high-pass response is symmetric about = exactly as
the low-pass is symmetric about 0, we get 0. n- o, so that a = 0 from equation
(24).
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