ELECTRONOTES APPLICATION NOTE NO. 334
1 Pheasant Lane
lthaca, NY 14850 November 1995
(607)-273-8030

DESIGN AND APPLICATIONS
OF ELLIPTIC FILTERS

0. INTRODUCTION

Elliptic (Cauer) filters generally offer the sharpest cutoff of any of the
commonly available analog filters. Like inverse Chebyshev low-pass filters (see
AN-333), they have finite jo-axis zeros. However, unlike inverse Chebyshev, the
passband (as well as the stopband) is allowed to ripple, and this means that the
poles can be manipulated to increase the sharpness of cutoff. In particular, a
close placement of the highest frequency pole pair and the lowest frequency zero
pair results in a precipitous rolloff.

I T 1 I i ! T

[TGo)l
1 \—/w
0.8
0.6r
0.41
Elliptic—
*&«—Butterworth
0.2+ °

°°°Q°
0 i {)]]

0 0.5 1 1.5 2 25 3 3.5

AN-334 (1)

The contest between elliptic and Butterworth is illustrated by Fig. 1. We note
that in general terms, Butterworth is a "better" low-pass filter for frequencies from
0 to about 0.8 (flatter response), and for frequencies greater than about 1.8
(greater rejection). In the region immediately around 1, the elliptic is clearly
superior. The choice between one or the other is clearly involved, and application
dependent. Elliptic is probably a good choice where we can tolerate ripple in the
passband (e.g., for telephone speech), where we want a very sharp cutoff, and

where we are looking for only a fixed amount of minimum rejection in the
stopband.

Like the inverse Chebyshev, the presence of jo-axis zeros offers us the
opportunity to place one zero right on top of some frequency that we may want to
reject completely. This can be done even in the absence of easily invertable
design equations simply by scaling all the poles and zeros. In addition, the
elliptic analog filters are easily converted to digital filters using Bilinear-z. In fact,
except for fairly low-order elliptic filters, it is quite difficult to actually realize

analog elliptic filters due to sensitivities of the performance characteristics to
component tolerances.

1. ANALOG FILTER DESIGN

The design equations for elliptic filters are not simple, and we really need
computers to evaluate certain functions by iteration. (The design procedure itself
is not iterative however, unlike the iterative "Parks-McClellan" FIR design
procedure for similar-looking FIR responses.) Here we have simply taken an
available FORTRAN program from Parks and Burris [1] and converted it to
MATLAB™ [2] without much difficulty. The new program is given below as a
main program and four other MATLAB functions serve in place of the subroutines
in the FORTRAN program.

1-a: MAIN PROGRAM AEF.M

function [an,ad,az,apl=aef(WP,WS,R1,R2)
function [an,ad,az,apl=aef(WP,WS,R1,R2)

ANALOG ELLIPTIC FILTER
WP and WS in radians
R1 = passband ripple in db (e.g., 1 db)
R2 = stopband rejection in db (e.g., 20 db down)

%
%
%
%
%
%
%
%
% example: [an,ad,az,apl=aef(0.98,1.02,1,20)
%

%

%

B. Hutchins Fall 1995
After FORTRAN Program 9 from Parks & Burrus,
% Digital Filter Design, Wiley, (1987)

%
% Requires Functions: cei, fk, elp, arcsc

AN-334 (2)

E=sqrt(10°¢0.1*R1)-1);
K=WP/WS;
KC=sqrt(1-K*K);
K1=E/sqrt(107(0.1*R2)-1);
K1C=sqrt(1-K1%*K1);
KK=cei(KC);
KKC=cei(K);
KK1=cei(K1C);
KK1C=cei(K1);
XN=KK*KK1C/(KK1*KKC);
N = floor(XN+1);
disp(! FILTER ORDER N:');N
K1=fk(N*KKC/KK);
K1C=sqrt(1-K1*K1);
KK1=cei(K1iC);

N2=(N+1)/2;
if floor(N/2)==N/2; L=1; else L=0; end
tl=L;
VO=(KK/(KK1*N))*arcsc(1/E,K1);
[SN,CN,DNI=elp(V0,K);
SM=SN;
CM=CN;
DM=DN;
for J=1:N2
ARG=KK*L/N;
[SN,CN,DNl=elp(ARG,KC);
ZR(J)=0;
if L 7= 0; ZI(J)=WS/SN; end
PR(J)=-WP*SM*CM*CN*DN/ (1-((DN*SM)"2));
PI(J)= WP*DM*SN/(1-((DN*SM)"2));
L=L+2;
end
if LL==1;
ap=[PR+]*PI,PR-j*PI1];
az=[})*21,-j*211;

end

if LL==0;
ap=[PR(1), PR(2:4)+]*PI(2:4), PR(2:4)-j*PI(2:1)1;
az=[2I(2:0)*j, -Z21(2:4)*}1;

end

an=poly(az);

ad=poly(ap);

w=0:.002:4;

H=fregs(an,ad,w);
H=H/abs(H(1));

figure(1)

plot(w,abs(H))

figure(1)

pause

figure(2)

plot(real(ap), imag(ap), 'x*)
hold on

zz=zeros(1, length(az));
plot(zz,imag(az),'o')
ymax=ceil(max(abs(az)));
xmax=ceil{max(abs(real(ap))));
axis([-xmax, 0.5, -ymax, ymaxl);
grid

hold off

figure(2)

AN-334 (3)

1-b: REQUIRED FUNCTIONS

1-b-1: PROGRAM CEI.M

function y=cei(KC)
% function y=cei(KC)
% Complete Elliptic Integral
% Function is support of aef.m
disp(!'Function cei.m called')
A=1;
B=KC;
for J=1:20
AT=(A+B)/2;
B = sqrt(A*B);
A=AT;
if ((A-B)/A) < 1.2e-7; break; end
end

y=1.5707963/A:

1-b-2: PROGRAM FK.M

function y=fk(U)
% function fk(U)
% Function in support of aef.m
disp('Function fk.m called!)
Q=exp(-pi*U};
A=1;
B=1;
c=1;
D=Q;
for J=1:15
A=A+2%C*D;
C=C*D*D;
B=B+C;
D=D*Q;
if C < 0.1e-7; break; end
end
y=4*sqre(Q)*(B/A)"2;

1-b-3: PROGRAM ARCSC.M

function y=arcsc(U,KC)
% function y=arcsc(U,KC)
% Arc elliptic tangent
% function in support of aef.m
disp('Function arcsc.m called')
A=1;
B=KC;
Y=1/U;
L=0;
for J=1:1:15
BT=A*B;
A=A+B;
B=2*sqrt(BT);
Y=Y-BT/Y;
if Y==0; Y=sqrt(BT)*1e-10; end
if abs(A-B) < (A*1.2e-7); break; end
L=2*%L;
if Y<0; L=L+1; end
end
if Y<0; L=L+1; end
y=(atan(A/Y) + pi*L)/A;

AN-334 (4)

1-b-4: PROGRAM ELP.M

function [SN,CN,DNI=elp(X,KC)
% function [SN,CN,DNl=elp(X,KC)
% Elliptic Function

% function in support of aef.m
disp('Function elp.m calted')

if X==0; SN=0; CN=1; DN=1; end

o
1R T

X"=0;
1'
KC;
for 1=1:20
AACT)=A;
BB(I1)=B;
AT=(A+B)/2;
B=sqrt(A*B);
A=AT;
if ((A-B)/2) < 1.3e-7; break; end
end
C=A/tan(X*A);
D=1;
i=1;
for I=i:-1:1
E=C*C/A;
C=C*D;
A=AA(I);
D=(E+BB(1))/(E+A);
end
SN=1/sqrt(1+C*C);
CN=SN*C;
DN=D;
end

2. CONVERSION TO DIGITAL FILTERS

The design of our IIR digital filter begins with an appropriate analog prototype,
to which we will then apply the Bilinear z-Transform. Here we will start with the
example 7th-order elliptic filter shown in the example of Fig. 1. Fig. 2 shows the
corresponding pole/zero plot for the analog filter. Note that Fig. 2 shows seven
poles and six zeros. However, from Fig. 1 we note that there is apparently a
seventh zero at infinity since the response is headed back down one final time for
high frequencies.

Now, let's assume that we want a digital filter that has a cutoff at a digital
frequency fy = f./5 = 0.2f,. This means that the analog prototype for Bilinear z-
Transform design should be "prewarped” to an analog frequency:

f, = (f/n) tan (nf/f,) = 0.2313 f, (1)

This means that we need to expand the poles and zeros of a normalized analog
prototype by 0.2313 f.. For specificity, let's take f;=10 kHz so that the desired

AN-334 (5)

jo

1.5

0.5

-0.6

-1.5

Fig. 2 Pole/Zero Plot of Analog Prototype Ellivptic of Fig. 1

cutoff is f;= 2000 Hz and therefore f,=2313 Hz. We are now in a position to
complete the design by properly expanding the poles/zeros of the analog
prototype and then making the usual Bilinear z-Transform substitution:

z = (2f, +s)/(2f-s) (2)
The one remaining detail is to deal with the "missing" zero at analog infinity. For
practical purposes, this can be just a matter of putting a seventh zero at some
large number (at 100000 here). The MATLAB design steps follow:

[an,ad,az,ap] = aef(0.985,1.015,0.5,25) (3)

This gives the normalized analog prototype with cutoff at 1. These normalized
poles/zeros are expanded for a cutoff at 2313 Hz as follows:

wap = 2313+az/ 2 (4)
waz = 2313xaz/ 2 (5a)
waz = [waz 100000] (5b)

where the initial w signifies warped values, in Hertz. The Bilinear z-Transform is
now implemented by the function bz.m, previously described in AN-333, and is
reprinted here just above the references at the end.

AN-334 (6)

15 . . ; .
|H(ee)| w
10t
5b i
£ j{\/\m
% o005 o041 015 02 025 03 035 04 045 05
olog
Fig. 3 Magnitude Plot of Digital Elliptic Filter
2
15
! i
/ N\
0.5
0
05
X
9 o
1.5
25 2 45 1 05 o 0.5 1 15 2 25

Fig. 4 Pole/Zero Plot of Digital Elliptic Filter

AN-334 (7)

The example digital filter design proceeds with the command line:
[dn,dd,dz,dp]=bz(10000, 2*«pixwaz, 2*pixwap) (6)

Fig. 3 shows the frequency response of the final digital filter. Note that the
cutoff is at 2000 Hz = 0.2 f, as we desired. Fig. 4 shows the corresponding
pole/zero plot. As expected, the desired properties of the analog prototype are
carried over to the digital response. Note also that the extra zero which we
added at s=100000 has mapped here to z=-1 in the z-plane (0.5 in the frequency
response).

3. PROGRAM BZ.M

function [dn,dd,dz,dpl=bz(fs,az,ap)
%function [dn,dd,dz,dpl=bz(fs,az,ap)
% convert analog poles/zeros to digital poles/zeros

% az=analog zeros ap=analog poles

% dz=digital zeros dp=digital poles

% dn=digital numerator dd=digital denominator

%

% Uses s <- (2/T)(z-1)/(z+1) the usual Bilinear-z substitution
% transformed to the inverse:

%

% z = (2/T + 8)/(2/T - s)

% Note that 2/T is the sampling frequency fs in Hz while s is
% thought of in terms of rad/sec. The two are supposed to
% be in different units. If your poles/zeros to be

% transformed are in Hz, multiply by 2*pi.

% B. Hutchins Fall 1995

dp=(2*fs + ap)./(2*fs - ap); % digital poles
dz=(2*fs + az)./(2*fs - az); % digital zeros

dn=poly(dz); % digital numerator
dd=poly(dp}; % digital denominator
References:

[1] T.W. Parks & C.S. Burrus, Digital Filter Design, Wiley (1987), pp 179-184

[2] Anon, The Student Edition of MATLAB, Prentice-Hall (1992)

AN-334 (8)

