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DESIGN AND APPLICATIONS
OF INVERSE CHEBYSHEV FILTERS

It is a popular idea in academic circles to teach a filter design phase of a digital
signal processing course by specifying a particular filter to be designed, usually
as an approximation to some idealized, perfect filter. A practicing engineer, on
the other hand, is unlikely to be handed a set of specs and then be asked to
design the filter in such a manner. Instead, the engineer is asked to design a
system, and this system may well require one or more filters, but it is up to the
engineer to figure out what filters are required, and then to design them. In many
cases, the actual specs of the filter are not an issue: the designer simply expends
whatever resources are available on a "good filter." However, there are also
instances of filter design, as there probably are most everywhere, where less may
be more.

One problem with simply deciding to design a "good filter" is that in doing this
we are concentrating on the filter itself, and we are thereby likely ignoring the
input to the filter. That is, we are preparing our filter to handle all possible inputs,
while the expected inputs may fall into more specialized classes. For example,
suppose we know that the signal to be filtered consists of a (desired) speech
signal, some random noise, and a "cross-talk" or "leakage" signal represented by
a 15 kHz sinewave. Let's further assume that the speech signal is large, that the
random noise is small, and that the leakage is large.

It is clear that some sort of ideal low-pass would do the job we want. We would
arrange for it to have a cutoff of about 4 kHz, which would pass the expected
speech bandwidth. This would also pass the random noise that is within its
passband, but the random noise outside the passband would be blocked.

Further, the 15 kHz leakage would be completely blocked.

If we next consider a "good" (but not ideal) low-pass, we expect that the
response in the stopband will be small, but generally not zero, except at isolated
frequencies. The fact that we are often trying to approximate a "stopband"
response that would be zero in the ideal case means that the approximation
passes exactly through zero at certain frequencies, usually several or many times.
[In the z-plane, we see zeros on the unit circle at these frequencies.] Generally,
these zeros end up in whatever positions are needed so that the stopband is
reasonably characterized as being "optimal"” in some overall sense (such as least
squared error or least maximum absolute error). That is, while we expect these
zeros to occur in the passband we have paid no attention to exactly where they
occur.
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In the type of application postulated above, where we had a strong but narrow-
banded component (a sine wave in fact) in the input which we wanted to block, it
becomes more useful to consider ways of placing zeros on top of such
components, blocking them completely. That is, we choose to expend our
resources in a different way. A small interfering component at the input, whose
frequency is in the filter's stopband range, which is then subject to substantial
rejection by the filter, becomes tiny at the output. On the other hand, a large
interfering component subject to substantial rejection may become only small,
not tiny. Thus we may well look for total rejection of the worse known offenders
as far more desirable than substantial rejection of all possible offenders.

One filter characteristic that fits this bill quite nicely is the so-called inverse
Chebyshev. This filter has a flat passband, and ripples in the stopband (Fig. 1).
It thus has zeros at finite frequencies. It can be an excellent choice when we
would just as soon have a flat passband, where we have one major stopband
component to reject, and where the cutoff frequency is not particularly critical.

Here we will find it convenient to use some design equations from Jackson [1].
These equations will allow us to have a desired zero position as an input
parameter to our design. Following Jackson, without elaboration, we start with a
design parameter y based on the stopband ripple 5,

y=[(1+ (1-32)12)/8,)"N (1)
from which we develop:

sinh(¢) = (y - 1/y)/2 (2a)

cosh(¢) = (y + 1/y)/2 (2b)

and using Butterworth pole angles for k = 0,1,....(N-1):

by = (2k-1)n/2N (3)
we get:

oy = ~(sinh(¢)sin(p))e, (4a)

o = (cosh(p)cos(p o, (4b)

with the N poles at o, + jB, given by:
ay = 0.0,0./(c,2+e,?) (5a)
Bk = "mcmrmk/(6k2+mk2) (5b)
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PROGRAM 1: INVCHEB.M, ANALOG INVERSE CHEBYSHEV

function [an,ad,az,apl=invcheb(N,d2,wc,wn,N2)

%

% INVERSE CHEBYSHEV ANALOG DESIGN

%

% function [an,ad,az,ap]l=invcheb(N,d2,wc,wn,NZ)

%

% an=numerator, ad=denominator, az=zeros, ap=poles
%

% N=order

% d2 = stopband ripple (as decimal fraction)
% wc = omega cutoff (cutoff frequency)

% wn = omega notch

% NZ = zero to place on notch

% example: [an,ad,az,apl=invcheb(12,0.1,1,2,3)
% places third notch on frequency of 2.0

% Design equations from L. Jackson, Digital Filters and

% Signal Processing, 2nd Edition, KAP

% B. Hutchins Fall 1995
k=1:N;

mu=(2*k-1)*pi/(2*N); % angles, equation (3)
wr=wn*cos(mu(NZ)); % compute wr using desired notch, egn (6)
gamma=( ( 1+sqrt(1-d2°2) ) / d2)"(1/N); % equation (1)
sinhf=(gamma - 1/gamma)/2; % equation (2a)
coshf=(gamma + 1/gamma)/2; % equation (2b)
sigmak = -sinhf*wc*sin(mu); % equation (4a)
omegak = coshf*wc*cos(mu); % equation (4b)
for k=1:N

alpha(k)=wc*wr*sigmak(k)/(sigmak{k) 2 + omegak(k)"2); % eqn (5a)
beta(k)=-wc*wr*omegak(k)/(sigmak(k) 2 + omegak(k) 2); % egn (5b)
end

az=j¥*wr./cos(mu); % analog zeros, equation (6)
ap=alpha+j*beta; % analog poles

an=poly(az); % analog numerator from zeros
ad=poly(ap); % analog denominator from poles

w=0:.002:5;
H=fregs(an,ad,w);
H=H/H(1);

figure(1)
plot(w,abs(H))
axis([0 5 0 1.2
figure(1)

pause

figure(2)
plot(alpha,beta, 'x*)
zz=zeros(1:N);

hold on
plot(zz,imag(az),‘o’)
axis([-3 1 -4 41)
grid

figure(2)

hold off
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and N zeros at:
sy = joJcos(u,) (6)

in our MATLAB™ [2] program invcheb.m on the previous page, we will
concentrate on a design procedure where we choose a stopband frequency to be
rejected completely (notched) as one of the input parameters. The program
comments probably make the program self-explanatory, and the program also
references equations (1- 6) above.
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Fig. 1 and Fig. 2 show the results of running the example indicated in the
header to the program. Here, in Fig. 1, we see a nice flat passband and a
stopband that rejects, coming up no higher than 0.1, our choice of §,. We also
see five of the six notches, the third of which is precisely at 2 as we specified (one
off scale at 12.1562). The pole/zero plot of Fig. 2 shows the jo-axis zeros (two at
+12.1562j not shown) and note that the poles here swing out in a wider arc than
we usually see for low-pass, essentially supporting the stopband in this case.

So far we have been designing analog filters, but we can also easily design
digital filters based on an inverse Chebyshev prototype using Bilinear
z-Transform. The filter design procedure is very similar to that for other types of
analog prototypes such as Butterworth and Chebyshev. There are a couple of
interesting wrinkles, however.

One of these wrinkles is that in the case of inverse Chebyshev, we have finite
analog zeros (one infinite zero for odd order). In the case of Butterworth and
Chebysheyv, the zeros at analog infinity all mapped into digital z=-1, and we tend to
treat this as just an automatic step - we just add these (often ad hoc) after we map
the poles. For inverse Chebyshev, we will need to transform the finite analog
zeros, but this is no problem and is done in exactly the same way that we
transform the poles.

The second wrinkle is that, against the particular application scenario
postulated above (strong stopband component), we are interested in having a
particular zero fall at a particular frequency. With Bilinear-z, we get to have one
and only one frequency mapped exactly from the analog domain to the digital
domain, and for usual low-pass designs, we almost always choose this one
frequency to be some well-defined "cutoff" frequency. Here we will want to make
the frequency match at our desired stopband notch frequency. In consequence
of our concentration on this notch placement, the low-pass cutoff frequency,
already not too well defined, may become even less well-defined due to the
warping. This simply means that we may need to go back and modify the design
if we are not happy with the overall results. In general, the first modification to
consider would involve placing the frequency to be notched at a different zero.
Placing the frequency to be notched on a lower zero will of course effectively
raise the low-pass cutoff, and conversely.

In our digital filter example, let's suppose that we want a low-pass digital filter
that clocks at a sampling frequency of 10000 Hz, which has a passband of
something like 1000 Hz. In addition, we want to have a zero at exactly 2000 Hz, If
we were designing for an ordinary low-pass application, we would know the
desired digital filter cutoff frequency and would use a Bilinear-z warping to find
the corresponding cutoff of the analog prototype filter. Here we have a desired
digital filter stopband notch (2000 Hz) and we must warp this for the
corresponding analog prototype notch. This we find, using the usual Bilinear-z
tangential warping between an analog frequency fa and digital frequency f;:
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fo= (f/m) tan(nfy/f;) = (10000/x)tan(20007/10000) = 2312.6567 Hz (7)

This means that we need to design our analog prototype to have a zero at
2312.6567 Hz. This is easily done. For example, we can use the program
invcheb as:

[an,ad,az,ap]=invcheb(12, 0.1, 1, 2.3127, 3)

which results in a response very similar to Fig. 1, except the third notch is at
2.3127 instead of at 2. Here we are entering frequencies in units of kHz for
convenience and for plotting consideration. We will just have to remember to
enter the sampling frequency in kHz as well later.

The conversion of the analog prototype to a digital filter is accomplished with
the Bilinear-z transform and is done by transforming each analog pole and each
analog zero separately. The mapping is simply derived from the usual
substitution:

s & (2/T)(z-1)/(z+1) (8)
which is solved for z to give the inverse:
z= (2IT +s)/(2IT -s) =(2f, + s)/ (2f, - 5) (°)

where f_ = 1/T. It is important to note that here s must be in rad/sec while T is in
seconds, making f; have units of Hz. The two are not in the same units, and
attempts to enter them in the same units will give wrong answers. You must
check to see what units you are working in, and convert if necessary (see
example).

The MATLAB program bz.m given below is simply an implementation of
equation (9). For our example, we want to convert the analog poles/zeros
generated by invcheb to digital poles/zeros. Here we use:

[dn,dd,dz,dp] = bz(10, 2*pi*xaz, 2*pixap) (10)

Note that the sampling frequency is entered as 10 since we have agreed to use
units of kHz. The analog poles were similarly in units of kHz, so we have

multiplied them by 2*pi in order to get them in kiloradians/sec. Glancing at
equation (9) convinces us that multiplying all frequencies by 1000 (going from kHz
to Hz) would make no difference, canceling out of the ratio. We could also have

divided the sampling frequency in equation (10) by 2*pi (instead of multiplying s
by 2%pi) and gotten the correct results, but this is confusing and should be
avoided.
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PROGRAM 2: BZ.M, BILINEAR Z-TRANSFORM

function [dn,dd,dz,dpl=bz(fs,az,ap)

%function [dn,dd,dz,dpl=bz(fs,az,ap)

% convert analog poles/zeros to digital poles/zeros

% az=analog zeros ap=analog poles

% dz=digital zeros dp=digital poles

% dn=digital numerator dd=digital denominator

%

% Uses s <~ (2/T)(z-1)/(z+1) the usual Bilinear-z substitution
% transformed to the inverse:

%

% z = (2/T + 8)/C2/T - s)

% Note that 2/T is the sampling frequency fs in Hz while s is
% thought of in terms of rad/sec. The two are supposed to

% be in different units. [If your poles/zeros to be
% transformed are in Hz, multiply by 2*pi.

% B. Hutchins Fall 1995

dp=(2*fs + ap)./(2*fs - ap); % digital poles
dz=(2%fs + az)./(2*fs - az); % digital zeros
dn=poly(dz); % digital numerator
dd=poly(dp); % digital denominator

The resulting digital filter frequency response is shown in Fig. 3. Note that the
third notch is exactly at 0.2 times the sampling frequency (thus at 2 kHz as
desired). Fig. 4 shows the corresponding pole/zero plot for the digital filter. This
filter has a low-pass cutoff of about 1.6 kHz. This may or may not be close to
what we want. (Keep in mind that we are controlling the third notch, not the
cutoff.) So suppose that the cutoff is too high. In such a case, we choose to put
a different zero on the 2 kHz frequency. Fig. 5 shows such a case where the fifth
rather than the third notch is used. In this case, the low-pass cutoff is more like

800 Hz.
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