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TIME DOMAIN LEAST SQUARED LOW-PASS FILTERS

In AN-315 we looked at a least squared error method of FIR
filter design. For this method, we minimized the integrated squared
error over regions in the frecruencv domain. Here we will be
minimizing the squared error over a set of discrete points in the
time domain. This is just the classical method of fitting a curve to
a set of given points, for the case where the curve is of too low an
order to fit all the data exactly. For example, we will want to find
a reasonable fit of a straight line (first-order) to three points,
while a second-order curve would be required for an exact fit.
Accordingly, while involving a least squared error procedure, this
method is likely most directly related to the exact curve fitting of
AN-317. As in AN-317, the result will come out as a FIR filtering
operation.

Fig. 1 shows
our setup. We have
three samples x(0),
x(l), and x(2). We
wish to fit a line
to these points.
This line has the
equation x'(t) =
mt + b. The
parameters m and b
will be set so that
the total squared
error, Ee = Eoe +
E.̂  + Es* is
minimized. Once
we find this line,
we can use points on
it too fill in missing samples, or to replace existing points if we
wish. For example, the point x'(l) could be used to replace x(l).
We will want to see what this does for us.

Note that the errors Eo , Ei, and Ea are given by:

Eo = x(0) - b (la)

E, = x(l) - m - b (Ib)

EE = x(2> - 2m - b (ic)

Accordingly, the squared error is:

Least Square Error Fit
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E= = [ x(0)a - 2bx(0) + b^ ]

+ [ x(l)e - 2mx(l) - 2bx(l> + 2mb + ms + be ]

+ [ x(2H - 4mx(2) - 2bx(2) + 4ms + 4mb + bs ] (2)

We want to find values of m and of b that minimize EE. Thus we need
to take partial derivatives

3(Ea)/am = - 2x(l) + 2b + 2m - 4x(2> + 8m + 4b

= - 2x(l) - 4x(2) + 6b + 10m = 0 (3a)

6(Es)/6b = - 2x(0) + 2b - 2x(l) + 2m + 2b - 2x(2) + 4m + 2b

= - 2x(0) - 2x(l) - 2x(2) + 6b + 6m = 0 ( 3b)

Equations (3a) and (3b) can be solved to get:

m * £ x(2) - x(0) 3 / 2 (4)

b = 5x(0)/6 + x(l)/3 - x(2)/6 (5!

At this point, we have done nothing that is not readily
available in many math text books. We have simply found a reasonable
way to fit a line to three points. Next we need to bring in some
signal processing - the idea of digital filtering. In particular,
we will compute the value of x'(l), and suppose that we will be
replacing x(l) with x'(l) as a means of digital filtering.

Since the straight line is:

x'(t) = mt + b (6)

we have x'(l) = m + b, or:

x'fl) = [ x(2)/2 - x(0)/2 ] -*- C 5x(0)/6 + x(l)/3 - x(2)/6 ]

= [ x(0) + x(l) + x(2) ] / 3 £7)

This is clearly a three-tap moving-average, a known low-pass filter.
In fact, it is known that the least square process gives a result at
the mean of t (which is t=l for this case) that is the mean of x(t)
(which is what equation (7) gives).

We can think of the least square fitting as a type of
interpolation. As expected, we find a corresponding low-pass
filtering. We could also solve for x1(t) at any other value of t,
for example at t=1.5, at t=72, or at t=7.

While we expect relatively little in the way of performance from
this sort of design, it does illustrate the least-square error
process that is so important in many formulations of digital signal
processing.
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