
ELECTRONOTES
1 Pheasant Lane
Ithaca, NY 14850
(607J-273-8030

APPLICATION NOTE NO. 317

January 1992

POLYNOMIAL FITTING FOR SAMPLE-RATE CHANGING
AT RATIONAL AND IRRATIONAL FREQUENCY RATIOS

1. INTRODUCTION

Numerous methods for interpolating sample values are available.
That is, we have a good variety of ways of finding samples that are,
in some sense, the "correct" ones between samples actually available
to us. For example, we might have available a set of samples, and we
are able to increase this set by a factor of five by obtaining four
additional samples for each one we were given. In such a case, we
would usually find the additional samples spaced at 1/5, 2/5, 3/5,
and 4/5 of the original spacing (in addition to keeping the original
samples that are at integer values of the spacing). This is
equivalent to increasing the sampling rate by a factor of five
(without a corresponding increase in the bandwidth, of course). If
we then separated out, from this larger set, every fourth sample, we
would decrease the sampling rate by a factor of four. The final
sampling rate would be 5/4 the original, and we would have achieved a
5/4 sampling rate change. Fig. 1 shows this general idea.

i l l
1

0

' l i n i l ! lit]

2 3 4

Fig. 1 A 5/4 sample rate change using interpol

• original

o interpolated

I selected
v for output

by five followed by decimation by 4.

The interpolation process used is often (almost always?) a
digital low-pass filtering. That is, the original sequence is first
"zero-padded" by putting zeros into the positions to be filled. As
such, the new rate that results from interpolation is usually an
integer multiple of the original rate (five in Fig. 1). The
low-pass filter (operating at the higher clock rate) fills in the
interpolated values. Therefore, in the process of selecting the
final samples from among these new samples (decimation), we are
obliged to choose an integer factor (four in Fig. 1). Thus we have
schemes for changing a sampling rate, as long as the rate change is
an integer ratio.

AN-317 (1)

We do have methods, however, for finding the samples at ajav
points between existing samples - not just at equally spaced points.
Indeed, the most well-known recovery process of all (ideal low-pass
filtering - the reconstruction method of classical sampling theory)
provides a continuous version of the signal that corresponds to the
samples. In the time domain, we convolve the available samples with
the impulse response of an ideal low-pass filter (a continuous sine
function) for the exact same result. This is the sine interpolation
method.

In such cases, where we can calculate the interpolated values at
any point between existing samples, we could achieve any sampling
rate change desired, and not be restricted to integer ratios. For
example, if we wanted to change the sampling rate to a higher value
by a factor of 72, we would calculate the first sample at the
original position, the second at 1/V2 of the original spacing, the
third at 2/-J2 of the original spacing, and so on. (We would never
again use an original sample by itself.) Fig. 2 shows this general
idea, in contrast to Fig. 1

» original

interpolated
f— curve

;
selected
foroutput

Fig. 2 A -J2/1 sample rate change by calculating the output
values using a continuous interpolation method.

Continuous interpolation can be done with sine interpolation.
There are two problems however. First, in theory the sine
interpolation (ideal low-pass filtering) needs to be calculated over
all possible non-zero samples. In practice, we would probably have
to settle for a finite set of samples spaced about the point where we
are calculating the new output. (This need not be a very serious
problem since the 1/t term inherent in the sine function helps make
samples outside the chosen range relatively insignificant.)

The second problem concerns implementation: sine functions
[Sin(x)/x] are difficult to compute with the usual type of DSP chip,
and we would like to use (or have to use) such high-speed DSP chips
for practical applications. DSP chips are not good at calculating
sine functions, or at doing division. Accordingly we might look for
a different method of continuous interpolation that better suits DSP
chips. Here we will look at polynomial fitting.

AN-317 (2)

2. FITTING POLYNOMIALS

Finding polynomials that fit a certain set of data points is a
classical problem, and one which is not too difficult. It is perhaps
not at all clear that polynomials might serve as reasonable
interpolating functions for practical signal bearing functions.
[Polynomials "wiggle" a few times and then run off to infinity
outside some range, while signaling functions are most often
considered to be combinations of sinusoidals, which "wiggle" many
times and remain well within certain amplitude limits.] What is
even less obvious is the fact that a polynomial interpolating
procedure can be reduced to a time invariant FIR filtering process.

2a. Fitting a Line to Two Points

Consider the problem of fitting a straight line to two given
points. This is a very simple example, and at the same time, one
that is quite special. In the first place, anyone can do it. Even
if you don't remember the formulas from high-school math (and many
people do remember these), you can always just plot the points and
use a straight edge and a pencil. Conceptually, we have no
difficulty with this idea. Secondly, this procedure - putting a
straight line between two points * AS linear interpolation. In
addition, a straight line is a polynomial (a first-order one), so we
already know that polynomial interpolation is a reality.

Regardless of whether or not we remember how to fit a straight
line by formulas, we need to recognize here that what we are actually
doing is solving simultaneous equations, where the coefficients of
the polynomial are unknowns, and the given points are knowns. Based
on this idea, we can rederive formulas if we don't remember them. We
will be taking this one step further as well - to show that we are
dealing with an FIR filtering problem.

We begin with the idea that we have two points yc>(to) and y* (ti)
and that we want to find the straight line y(t) = at + b that goes
through them. Clearly we can cast this problem in the form of two
simultaneous equations. For convenience, we will also take to = 0
and t.t = 1. Thus :

yo(to) = y(0) = at + b = a-0 + b = b (la)

Yi (t.t) = y(l) =at + b = a - l + b = a + b (Ib)

Solving these we have:

b = y(0) (2a)

a = y(l) - y(0) (2b)

and our straight line is thus:

y(t) = at + b = [y(l)-y(0)]t + y(0) (3)

AN-317 (3)

Equation (3) can be recast in the form:

y(t) = y(0)[l-t] + y(l)t (4)

which we can think of in two important ways. First, we can think of
it as giving y(t) as a weighted sum of interpolating functions. The
weights are y(0) and y(1) while the interpolating functions are (1-t)
and t for this first-order case. Secondly, as we will see below, it
is in the form of an FIR filter.

y(t) y(D

y(o)

Fig, 3 Linear interpolation
from equation (4)

Fie. 4 FIR filter
from equation (4)

at this point, instead of thinking of equation (4) as an
equation for a function y(t), we can think of it as a function ytt)
where x is a particular value of t. Thus y(T) = ytO)[l-T] + y(l)t
where we are now thinking of t as a constant. In this view, Fig. 3
shows that y(x) is a linear interpolation of a value of y(t)
corresponding to t=T when the points y(0) and y(l) are known. Note
that -c can be any value of t, but is normally considered an
interpolation only when it is between t=0 and t=l. For the purposes
of this note (rate changing at non-integer ratios) it is important to
realize that T can be an irrational number. The interpolating
functions (first-order polynomials or straight lines) are seen in
Fig. 5.

Fig. 4 shows the FIR filter form of equation (4). Note again
that T is a constant, so the tap weights of this filter are
constants. It is clear that the network performs the summation of
equation (4). Here it may also seem that this filter only solves
the problem for t=T, and for no other points. However, when we
recall the nature of an FIR filter, we note that samples are not
simply loaded into the filter, to remain there forever, but actually
clock through the filter. That is, during each clocking interval,
samples clock from left to right. Therefore, eventually y(l) moves
to the y(0) position while y(2) (a new sample) moves to the yd)
position, while y(0) is gone. At this time, the interpolation
problem is the same as it was, except now we are interpolating

AN-317 (4)

F,Lg. 5 Interpolating functions for first-order
curve fitting

between y(l) and y(2). Accordingly, even though the tap weights
remain T and (1-t), we are now solving the problem at 1+t. After
another clocking, we are solving it at 2+T, and then at 3+t, and so
on. We can therefore regard x not just as an offset from t=0, but an
offset from all original samples,

For example, suppose we want T=l/2, then ytn+1/2) = y(n)/2 +
y(n+l)/2, which is the average value, the correct solution for a
linear interpolation. Note however that the filter of Fig, <* neither
gives back the original samples, nor does it give back any value in
the time positions of the original samples. It only calculates the
samples in between, offset by t. For our example of t=l/2, we could
obtain a 2:1 interpolator by interleaving these calculated samples
between the original ones, and this general idea is probably
straightforward, useful, and will be seen in Section 3 below. Below,
eventually, in the case of interpolating for an irrational rate
change, we will not be looking at special (fixed) values of -c. In
this cases, none of the original samples would ever be used, and al]
new samples will have to be calculated with time-varying tap weights.

2b. Fitting a Curve to Three Points

Much of Section 2a was fairly trivial. Here we will move on to
the problem of fitting three points, and things change drastically in
that we can not trivially find the answer. We might recognize that
in order to fit three points we need a second-order curve, and that a
second-order curve is a parabola, but we don't have a "parabola
ruler" or any equivalent mental notion to work with. Instead, in
this case we must set up and solve the equations. This was the
reason we took several laborious extra steps in the two point case.

The three point case was actually presented as an example within
a fairly comprehensive report in Electronotes. See B. Hutchins,
"Interpolation, Decimation, and Prediction of Digital Signals,"
Electronotes. Vol. 15, No. 164-167 (Special Issue F), July 1986 for
the original presentation and related material.

AN-317 (5)

Following the same procedure we did for the two-point case, we
have three known points at time t=0, t=l, and t=2, and will denotes
these as y(0), yd) and y(2) respectively. The polynomial will be
taken to be:

y(t) = at" + bt + c (5)

and our three equations are:

y(0) = c (6a)

y (l) = a - t - b + c <6b)

y<2) = 4a + 2b + c (6c>

which are solved to give:

a = y(2)/2 - yd) + y(0)/2 (7a)

b = -y(2)/2 + 2y(l) -3y(0)/2 (7b)

c - y(0) (7o)

so the polynomial is:

y(t) = [y(2)/2 - yd) + y(0)/2] t" +

[-y(2)/2 + 2yd) -3y(0)/2] t + y(0) (8)

which can be recast as:

y (t) = [t'"/2 -3t/2 + 1] y (0) +

[-f + 2t] yd) + [t-V2 - t /2] y (2) (9)

which can then be written as an FIR filter:

y(t) = ho y(0) + h, yd) + h,.. y(2) (10)

where the tap weights h,,(t) are seen in equation (9) to be:

ho(t) = [t'V2 -3t/2 + 13 dial

h, (t) = l-t*- + 2t] (lib)

holt) = [t'"/2 - t/2] die)

At this point we have all we need to go ahead with an FIR
realization, as we did in the two point case. However, things are a
bit different in that there are now two possible choices where we may
wish to interpolate points: between t=0 and t=l, or between t=l and
t=2. [In the two point case, it was fairly obvious that we were

AN-317 (6)

looking at the region between t=0 and t=l only (although the
possibility of extrapolation or prediction outside the range of given
points is sometimes interesting to look at.)]

In this three point case, either choice of interval (t=0 to t=l,
or t=l to t=2) is possible. OUT only preference might be to chose a
value that is near the center of the given points (that is, close to
t=l for this case). Intuitively we feel that the fit is best near
the center where there are more given points on each side to
"stabilize" the curve fit. [In particular, we know that the
polynomials will run off to +°° or -» rapidly when we move outside the
range of given points].

In the two point case, when it got to an actual FIR filter
realization, we saw an equivalence between points that were separa
by integers. That is, each time the filter clocked, we re-s"i"»^
interpolation problem for a new set of samples, or equivaler

irated
. the

c f em tor a new set or samples, or equivalently, for
a different time. Only the offset from the integers, the value we
have called t, made any difference in determining the tap weights.

In this three point case, we might want to obtain interpolated
points offset from the integers by +3/4. For this value, taking
x=3/4 (inside the first interval) makes sense, since 3/4 is close to
1, the center of the three given points. On the other hand, if we
wanted interpolated points offset from the integers by +1/4, taking
T=l/4 probably would not be a good choice, since 1/4 is closer to 0
than it is to 1. For the 1/4 value, the choice of the second
interval would be better, and we would take t-1.25.

Fig. 6 and Fig. 7 show these ideas by showing the polynomial fit
and corresponding FIR filters, with example points y(0)=l, y(l)=0,
and y(2)=2. For the t=1.25 case, the sample at the output is
clearly the one offset from y(l) by 0.25 and offset from y(0) by
1.25. The sample offset from y(0) by 0.25 was available at the
previous clocking of Fig. 7b, where y(-l) was in the y(0) position,
y(0) in the y(l) position, and y(l) in the y(2) position. [Thus we

y(2}=2

y(t) = 1.5t - 2.5t

y(0.75)=-0.0315 y(l)=0

Fig. 6 Second-order polynomial fit to samples 1, 0. and 2

AN-317 (7)

h2
0.15625

yu

fc

z-l

hl
0.9375

^Y

Second-order
interpolation at t=0.75.
Tap weights from equations
(lla), (lib), and (lie)
for t = T = 0.75

7b Second-order
interpolation at t=l.25.
Tap weights from equations
(lla), (lib), and (lie)
for t = T = 1.25

need to think about the clocking interval involved as well as the
coefficients when determining exactly which point is interpolated.]
Also, note that the t-1.25 case can be thought of as the T,= 3/4 case
with samples in the reverse direction, and this fact is seen in Fig.
7 by the reversal of the tap weights for the two different cases.

Having now looked at this result in terms of an interpolation,
and in terms of an FIR filtering process, it is instructive to look
separately at the three functions in equations (lla), (lib), and
(lie). This curve fitting interpolation method is known as
"Lagrange Interpolation", but these three functions are usually
called "sampling polynomials" [R.W. Hamming, Numerical Methods for
Scientists and Engineers. Dover (1973)]. We will find it most useful
here to continue using the notation ho(t), h±(t), and h,>(t), thinking

Fig. 8 Sampling Polynomials for 2nd-Order

AN-317 (8)

of these as tap weights. By the time we finish, the idea of having
these tap weights as functions of time will seem natural, although we
will no longer think of them as an impulse response (which applies
only to linear, time-invariant systems).

The "sampling polynomials" for the three-point cases are shown
in Fig. 8. [Compare these with the corresponding two-point case,
Fig. 5 where h.,(t) = 1-t and hi.(t) = t.] We note several things.
First, just as in Fig. 5, we see functions crossing over each other
in an x-like manner. There are three such x-patterns: h«(t) and
hi(t) cross in the interval from t=0 to t=l, h (. (t) and hw (t) cross in
the interval from t=l to t=2, and h.,(t) and he(t) cross in the
interval t=l/2 to t=3/2. These features suggest that curve fitting
of orders greater than first-order still have component functions
that perform a rough linear interpolation, which is then refined by
the actual curvature of the functions and by additional contributing
functions.

2c. Fitting a Curve to Four (or More) Points

In Section 3 of this note we want to show exactly how networks
that calculate individual interpolated samples can be interleaved to
form a full interpolator network - a low-pass filter, in fact. It
will be convenient, and most illustrative, to use an interpolating
polynomial that is of odd order, and greater than first-order.
Accordingly, we will develop the third-order case below, despite the
fact that the procedure is probably quite clear without doing this
additional example.

The third-order polynomial is:

y{t) = ata + bt" + ct + d (12)

so our equations are:

Y(0) = d (13a)

yd) =a + b+c + d (13b)

y(2) = 8a + 4b + 2c + d (13c)

y(3) = 27a + 9b +• 3c + d (13d)

which are solved to get:

a = - (l/6)y(0) + (l/2)y(l) - (l/2)y(2) + d/6)y(3) (14a)

b = y{0) - (5/2)y(l) + 2y(2) - (l/2)y(3) (14b)

c = - (ll/6)y(0) + 3yd) - (3/2)y(2) + (l/3)y(3) (14c)

d » y(0) (14d)

so -the polynomial as given in (12) can be recast as:

AN-317 (9)

y(t) = [-d/6)t-< + f - (ll/6)t + 1] y(0)

+ [d/2)t" - (5/2)t" + 3t] yd)

+ [-d/2)t< + 2t- - (3/2 It] y(2)

+ [(1/6 It™ - d/2)t" + (l/3)t] y(3)

so the tap weights are:

h , , (t > = [-d /6) t=" + tu - dl/6)t + 1]

h, (t) = [d /2) t» - (5 /2) t " + 3t]

he(t) = [-d/2)t :> + 2t» - (3/2) t]

h a l t) = [d/6)t : t - d/2)t" + (l / 3) t]

(16a)

(16b)

(16o)

(16d)

Once again, the tap weights are the sampling polynomials, and
are sketched in Fig. 9. We again see the various x-patterns in the
central region: hMt) and hx(t) cross between t=0 and t=l, hi(t) and
htr(t) cross between t=l and t=2, and hs(t) and ha(t) cross between
t=2 and t=3. Note that between t=l and t=2 that hi(t) and h=,(t)
cross in a manner that looks very much like linear interpolation
(Fig. 5) since ho(t) and h;s(t) are very small in that region.

Fig. 9 Sampling Polynomials for Third-Order

AN-317 (10)

We may desire to fit even higher-order polynomials to larger and
larger number of points. In such cases, a general formula for the
sampling polynomials (tap weights) h,-i(t) will prove more efficient
than equation solving as we have been using above. The general
formula is:

N
lV,(t) = I"! (t - t m) / (t * i - t m) (1?)

m=0
m*n

where N is the order of the polynomial fit (N+l points to fit). This
formula comes from the idea that we want the n-th sampling polynomial
to have zeros at all times tm except at time t,-, when it should be
equal to one. [See Fig. 8 and Fig. 9 for examples.] For example, we
could generate hi(t) for the 3rd-order case, where the four points to
fit occur at times t,,, where t,, = n for n = 0, 1, 2, and 3.

hi(t) » (t-0) (t-2)(t-3) / (1-0) (1-2X1-3)

= t(t" - 5t + 6) / 2

which agrees with equation (16b) above,

3. THTTTHT.KnVING INTERPOLATING SECTIONS FOR flN OVER^E FTVT™

We have noted above that the FIR filters we have developed are
used to calculate the interpolated value of a function at positions
in time that are offset from the original points by a certain amount
which we have denoted by x. Thus while these networks calculate
points to be interpolated, they do not interpolate points in the
sense of inserting these calculated points between original points
and/or among other interpolated points, Thus we must develop
additional mechanisms to complete the job. What we do here is very
similar to what was done in the previous application note.

Fig. 10 shows a intermediate scheme that helps us understand
what needs to be done. [For a number of reasons, this scheme is not
practical, but we have no intentions of using this except as an
intermediate step.] We have here four FIR filters in parallel. The
top one computes the sample at time offset T=l. As can be seen, this
is simply a matter of setting one tap to one, and the other three
taps to zero. The remaining three FIR filters are not as trivial,
and compute the samples at time offsets x=1.25, x=1.50, and T=1.75.
The switch shown then operates at four times the original sampling
frequency, and sequences these outputs in the proper order.

Fig. 11 shows a more conventional way of realizing the full
interpolation scheme. Here we achieve a standard FIR filter
operating at four times the original sampling rate. The function of
the switch in Fig. 10 is thus replaced by having the input sequence
zero-padded with three zeros between each of the original samples.

AN-317 (11)

Interleaving four FIR filters, each of which
calculates an interpo1ated point.

Fig. 11 An FIR filter that is equivalent to Fig. 10 which
uses four times the original sampling rate

AN-317 (12)

As in pervious case, the final result is a low-pass filter.
Fig. 12 shows the frequency response of the component FIR filters of
Fig. 10, while Fig. 13 shows the frequency response of the overall
low-pass of Fig. 11.

i.2r

0.4

0.2

f./2
Fig. Igft Freq. response of
interpolator for 1/4 or 3/4

0 fs/
2

Fig. 12b Freq. response of
interpolator for 1/2

r-esponse of overal 1 interpo 1 ator of Fig. 11

AN-317 (13)

It. IRRATIONAL RATE CONVERSION

One of the attractive features of polynomial fitting was the
ability to compute the sample at any point between original samples,
and not just at a finite set of equally spaced points between the
original sample. We have also remarked about the ease of calculating
the tap weights for the polynomial method, for the case where we want
to do sample-rate conversion with a DSP chip. Below, we want to
show more details of just how this might be done.

4a. Synchronization

In some cases, we may be thinking in terms of converting one data
file to another. For example, we might have a data file that has
been recorded at one rate, and we want to double this rate before
playback. This would be a matter of computing intermediate samples,
putting them between originals, and ending up with a file that is
twice as large. In such a case, the samples are exactly where they
belong - precisely in the middle.

However, another case would be one where we have two machines
which operate at different nominal sampling frequencies, and these
two machines need to exchange data. For example, one might b© a
playback machine and the other is a recorder, and we are essentially
making a copy. Suppose for example that the playback machine is
putting out data at a nominal 40 kHz rate and the recorder wants data
at a nominal 50 kHz rate. This appears to be a simple 5:4 conversion
(Fig. 1). However, neither machine has an infinite precision clock.
The 40 kHz machine might actually have a 39.99931... kHz clock and
the 50 kHz machine might actually have a 50.0024... kHz clock, and
both might drift with time and temperature.

Accordingly, one of the two has to get to be the boss machine.
It has to control the clock of the other, or tell the other machine
when it want to receive or transmit a sample. If necessary, this
also serves as a request to actually interpolate (calculate) a sample
that the sending machine does not have available. If this
synchronization did not happen, we would expect difficulties, at
least to the point where some occasional samples would become
confused or lost as timing edges pass over each other.
Synchronization may thus already be a necessary part of some data
transfer schemes, regardless of the fractional rate change.

4b. LiPiftfTT Interpolation at an Irrational Rate

For our example, we will consider the problem of obtaining a
sampling rate conversion at an irrational rate using linear

AN-317 (14)

interpolation. As noted above, linear interpolation is the simplest
case of polynomial interpolation. Extension of the method to a
higher order polynomial fit is straightforward.

Playback (Transmitter) Record (Receiver)

Interpolator

Fig. 14 Sample rate conversion at irrational fraction
ratio using linear interpolation

Fig. 14 shows our example system. We assume that we have a
transmitting (playback) machine and a receiving (recording) machine.
We assume that the playback machine has stored data corresponding to
the original rate, and that this rate is different from the desired
rate of the recording machine. Each of the machine has its own
timer which sets the sampling rate. Between the two machines, we
show the interpolator devices.

We think of the system as having Timer 1 control the data output
from the transmitting machine. This timer also clocks data on the
delay line of the interpolator. Timer 2 controls the sampling rate
of the receiving machine. When the receiver needs a sample, it sends
a request to the interpolator. It then expects a sample back after a
fixed time interval. Accordingly, Timer 2 requests a sample slightly
in advance of the time it actually needs one.

When the interpolator receives the request, it looks up the
"local time" of the transmitting machine. That is, it needs to
determine the offset T from the time of the last clock of Timer 1 to
the time of the request from Timer 2. It may require some effort to
find this T. however.

AN-317 (15)

Note that while this value of x is easy to understand in
principle, it is by no means always easy to obtain in practice. In
fact, the whole method is sometimes trivial, except for the
difficulty of getting x. The problem is that we have explicitely
invoked discrete time as a sampling rate of a system, and now we are
asking to re-derive its continuous counterpart. In some cases, the
sampling rate of a system is set by a clock associated with an A/D or
D/A converter. Any DSP chip associated with this system is probably
clocking much faster {doing its work, and then waiting for the
sampling rate clock to initiate another processing cycle). In such
cases, the finer "ticks" or the higher frequency clock can be used to
give an excellent estimate of x.

In any case, once we assume that we have x, we calculate the tap
weights of the interpolator, and then the interpolated sample itself.
This sample is then transmitted to the receiving system. Note that
the interpolator looks like an FIR filter in this case, but it is
actually time-varying, and can not be treated as a time-invariant
filter. It is just a device that calculates the correct answer.

The extension of this idea to higher order polynomial fits is
straightforward - we just have more taps to deal with. In fact, we
could also use x to interpolate by other methods, such as sine
interpolation.

AN-317 (16)

