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Most readers are probably familiar with the general notion of an
FFT (Fast Fourier Transform). An FFT is actually any algorithm that
computes the DFT (Discrete Fourier Transform) with greater efficiency
than the direct calculation of the DFT. Although many people use
FFT's, most such persons may only have an elementary idea as to how
FFT's work, and fewer still have ever needed to actually write one.

The purpose of this note is to show a largely intuitive method
of obtaining FFT flow graphs (the so-called "butterflies"), which
could then be programed. The literature abounds with numerous FFT
methods, with many different names, different matrix factorizations,
different index mappings, different decimations, etc. In light of
all these mathematical considerations, it is interesting that one can
still come up with correct and usable FFT butterflies largely through
intuition and experience. One starts with some familiarity with the
basic structures (i.e., component DFT's), with typical interconnect-
ion schemes, and then follows this with intuitive reasoning. In
addition to obtaining possible butterflies, study of this sort of
flow graph by developmental thinking can be useful in aiding our
understanding of how and why the FFT works.

As an example, we will consider obtaining a butterfly for a
12-point FFT. Note that FFT's for powers of 2 are by far the most
common, so we are purposely taking a different example. We will show
the decomposition of this 12-point DFT into four 3-point DFT's and
three 4-point DFT's, and will obtain the input and output orderings.

The DFT equation is:

N-l
X(k) = E xdiJe--*"9"'"'"*

n=0

for k = 0 to N-l. [Note that N will be 12 in our example.] That
is, we need to sum up samples weighted by the so-called "phase
factors" e"-* <eTr/h>l>"t<. The DFT can be put in the form of a matrix
equation:

X(k) = W x(n)

where X(k) is a length N vector usually corresponding to samples in
frequency while x(n) is a length N vector usually corresponding to
samples in time. The matrix W is a matrix of phase factors:
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Clearly the writing of the common exponential factor e"J <aiTXISI > is
tedious, and what is really of interest is the so-called "nk" values
Accordingly we can write an "nk-array" that contains only the nk
factors. At this point, we can take on our specific example of
N=12. The array is then:

0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10
11

0
2
4
6
8
10
12
14
16
18
20
22

0
3
6
9

12
15
18
21
24
27
30
33

0
4
8
12
16
20
24
28
32
36
40
44

0
5

10
15
20
25
30
35
40
45
50
55

0
6

12
18
24
30
36
42
48
54
60
66

0
7

14
21
28
35
42
49
56
63
70
77

0
8

16
24
32
40
48
56
64
72
80
88

0
9

18
27
36
45
54
63
72
81
90
99

0
10
20
30
40
50
60
70
80
90
100
110

0
11
22
33
44
55
66
77
88
99

110
121

Next we can reduce this array by considering all the entries to
by replaced with the numbers above "MOD 12". That is, we subtract 12
from each entry until the remainder is less than 12. We do this
because of the periodicity of the phase factors:

= e'

where m is any integer. This ability to exploit the periodicity of
the phase factors is one of the two major reasons that an FFT works,
The array reduced MOD 12 is seen below:

0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10
11

0
2
4
6
8
10
0
2
4
6
8
10

0
3
6
9
0
3
6
9
0
3
6
9

0
4
8
0
4
8
0
4
8
0
4
8

0
5

10
3
8
1
6
11
4
9
2
7

0
6
0
6
0
6
0
6
0
6
0
6

0
7
2
9
4
11
6
1
8
3

10
5

0
8
4
0
8
4
0
8
4
0
8
4

0
9
6
3
0
9
6
3
0
9
6
3

0
10
8
6
4
2
0
10
8
6
4
2

0
11
10
9
8
7
6
5
4
3
2
1
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At this point, we will use the idea that the 12-point DFT can be
broken up into smaller sized DFT's. In this way, a desired phase
factor may be obtained as the combination of two or more phase shifts
that are encountered in an overall path through the smaller DFT's.
This idea of multiple use of paths is the second of the two major
reasons why an FFT works. In our case, we will build our 12-point
FFT out of 3-point and 4-point DFT's, and we need to study these
separately, and adjust them to meet our needs.

A 3-point DFT is calculated according to the equation:

2
X(k) = E x(n)e~

J <aTTX3:'"h:

n=0

while a 4-point DFT is calculated as:

X(k) = E x(n)e-J<ST'x^>-k

n=0

The "nk-arrays" for these DFT's are clearly:

0
0
0

0
1
2

0
2
4

0
0
0
0

0
1
2
3

0
2
4
6

0
3
6
9

which can be reduced MOD-3 and MOD-4 respectively to:

0
0
0

0
1
2

0
2
1

0
0
0
0

0
1
2
3

0
2
0
2

0
3
2
1

The final adjustment we need to make to these smaller DFT's is that
they are to be used inside a 12-point DFT rather than in 3- or
4-point DFT's. Clearly:

= g— j < E s M > n l

Accordingly, to change from a 3-point to a 12-point DFT we need to
multiply the 3-point nk values by 4, and to change from a 4-point to
a 12-point DFT we need to multiply the 4-point nk values by 3. The
final nk-arrays for use in a 12-point DFT then become:

0
0
0

0
4
8

0
8
4

0
0
0
0

0
3
6
9

0
6
0
6

0
9
6
3
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The corresponding flow graphs for the 3-point and 4-point FFT's,
adjusted to work in a 12-point DFT, are shown in Fig. la and Fig. Ib
respectively. Here the signal flow is always from left to right, and
the numbers in the open circles represent the "path twist" in terms
of their nk value for N=12. We can think of these two flow graphs as
the basic blocks which we have available to build with. We will be
using three 4-point DFT's and four 3-point DFT's in our scheme.

Fig. la
3-Point DFT

Fig. Ib
4-Point DFT

For our specific example, we will place the 7 DFT's as shown in
Fig. 2, with the four 3-point DFT's on the left, and the three
4-point DFT's on the right. This figure also shows a proposed
interconnection of the blocks by the 12 lines shown. We note that
there are only 12 lines, that no output node of the 3-point DFT's is
used more than once, and that no input node to the 4-point DFT's is
used more than once.

The motivation for the particular interconnect scheme could come
from a mathematical formulation. Alternatively, we can use our
familiarity with similar structures and some reasoning to obtain the
same result. In particular, we note that X(0) is to be obtained as
the sum of all 12 inputs, with no phase shifts. This is possible by
having X(0) be the top output of the top 4-point DFT, with the four
inputs to this DFT being obtained as the top outputs of the four
3-point DFT's. In this way, four of the 12 interconnection paths are
determined. The remaining paths can be determined by analogy with
the first four, with a consideration also given to overall symmetry.
That is, the middle 4-point DFT receives its inputs from the middle
outputs of the four 3-point DFT's. Finally, the lower 4-point DFT
receives its inputs from the lower outputs of the four 3-point DFT's.
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X(5)

Fig. 2 Relating x(l) and X(l) determines output ordering
by working left to right from x(l)
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Having now established the interconnecting lines, and the
position of X(0), we need to consider the remaining inputs and
outputs. With regard to the x(n), we only know that each of the 12
x(n), one to a position, must be present on the left to serve in the
formation of X(0). It will be useful here to first look for a
possible path between x(l) at the input and X(l) at the output. That
is, we want a path for n=l and k=l, which of course means that the
total "path twist" is nk=l. However, clearly, the only path twists
directly available are 0, 3, 4, 6, 8, and 9. There is no 1.
Accordingly, we look for a path which can produce a 1, if taken
MOD-12. This can be provided by a total path twist of 13, available
as a path twist of 4 from a 3-point DFT, plus a path twist of 9 from
a 4-point DFT. Study of Fig. 2 indicates that there are four
possible paths with a total twist of 13. We can choose any one of
these at this point - it turns out that the other three choices
provide more or less equivalent final results.

Choosing the position of x(l) as the middle input of the second
3-point DFT, we find X(l) as the lower output of the middle 4-point
DFT (see Fig. 2). From this point on, the input and output orderings
are fixed, and can be easily determined. For example, starting at
x(l), we can follow a path across to some unknown X(k), keeping track
of the total twists of the overall path. Since this total is nk, and
since n=l for x(l), the result must be due to k. For example,
starting at x(l) on the left, and moving upward to the second output
from the top on the right side, we encounter only a single path twist
of 3, so this must be X(3). Similarly, starting at x(l) and going
down to the bottom output on the right, we find a total path twist of
8 + 9 = 17. Since 17 MOD-12 is 5, this is X(5). Accordingly, the
selection of x(l) determines the ordering at the output for all X(k).

In an exactly similar manner, the choice of X(l) on the right
side (as constrained by the selected x(l) with a connecting overall
path twist of 1) determines all the x(n). For example, starting at
X(l) as shown in Fig. 3 and working back up phase-free paths only, we
find that it is the upper left input point that must be x(0).
Similarly, from the point X(l) back down to the lower left corner, we
find a total path twist of 3 + 8 = 11, and the result identifies this
lower corner as x(ll).

The correctness of the final flow graph of Fig. 3 can be
demonstrated, if necessary, by an exhaustive examination of all
possible paths (144 of them in this case) to verify that they do in
fact correspond to the 12-point DFT. Experience in this area will,
however, generally lead to a belief in an "existence proof" so that
once we find the last piece of our intuitive derivation to fall in
place, we feel very confident that the whole thing works.

A few additional points can be made as we close. First, a study
of the three flow graph that are alternative to Fig. 3 [different
choices of x(l) and X(l)] shows no significant advantage in terms of
input or output ordering. Secondly, while some FFT structures have
additional path twists in the interconnecting lines, these were not
considered in depth here, but appear to not offer any significant
advantages either.
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x(0)

x(4)

x(8)

X(0)

X(5)

Fig. 3 Working back from X(l), right to left, determines
input ordering, completing flow graph.
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We also need to be sure to understand if this FFT really is
advantageous, relative to the corresponding DFT. We can do this by
counting all multiplies as being equal, regardless of whether or not
they are fully complex, or simply multiplies by ±1 or ± j . In this
case, the direct computation of the DFT would require 144 complex
multiplies. A count of the multiplies in Fig. 3 (not counting the
interconnects) gives 4 x 9 = 36 for the four 3-point DFT's and 3 x 16
= 48 for the three four-point DFT's. This is 84 multiplies total,
and what seems to be a savings of 84/144.

Whether or not this is a savings of course depends on the
relative "costs" of multiplies versus the cost of the "overhead" in
Fig. 3. In Fig. 3, we need to do a good deal of such things as
scrambling of input and output order, counting of blocks,
interconnections, and so on. It is doubtful that the savings of
multiplies would make up for the loss due to the FFT overhead for
this 12-point case, although it is clear that FFT's will have
significant advantages if we choose a high enough number of points.

It is known that Gauss (1777-1855) did use a 12-point FFT, and
in his day, computation was of course done by hand. Accordingly, it
is interesting to inquire about the efficiency of the FFT above if
hand calculations were required. In such a case, it is clear that
complex multiplications are fairly expensive, probably requiring
several minutes each. In contrast, simply assigning the result to
a scrambled location might only require a second. Further, the
encounter of a path multiplier of 1, of -1, or even of +j or -j would
have been significantly refreshing. Indeed, only 16 of the
multiplies of Fig. 3 are non-trivial (the path twists of the 3-point
DFT's). In hand computation, even the 12-point FFT would seem to be
an astounding short cut.

This leads to a final point with regard to whether or not it
would be worth our trouble to reduce the 4-point DFT's to a
combination of 2-point DFT's. Since the 4-point DFT's involve only
multiplies of ±1 or ±j, it would be a questionable advantage to
reduce the 4-point DFT's further. For example, to multiply by j we
only need to exchange the real and the imaginary parts of the complex
number to be multiplied.
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