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FREQUENCY RESPONSE OF BANDPASS FILTER

The second-order bandpass response is represented by a transfer function of the

T(s) .1 '
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where A is a constant, Q is the filter "Q", and m0 is the center frequency of the
bandpass. The significance of A and Q will be derived from the frequency response
function, |T(s)| or |T(jui)l- We note first the useful trick of finding the |T(s)| at
the center frequency, by just substituting s = JWQ into T(s). This means that the
first term and the last term in the denominator will cancel, and then the w0 and the
remaining s will cancel, leaving:

AQ (2)

The significance of A is as follows. At very low frequency, s is very small and will
be ignored in the denominator. Using equation (1) then,

|T(s)| = AU/UQ (low-frequency)

Similarly, at very high frequencies, relative to (,i0, only the

(3)

term matters, and

AQ

|T(s)| = AUQ/W (high-frequency) (4)

Equations (3) and (4) thus represent the asymptotic behavior of |T(s)| far away from
the center frequency. Note that these represent 6db/octave slopes, the so-called
"skirts" of the bandpass. These equations are certainly not valid at the center
frequency, but at the center frequency, they both agree that |T(s)| = A. In a case
where the skirts have been measured and plotted accurately on log-log paper, the
lines can be extended to intersect at u>o» and should intersect at a magnitude value
of A. At the same time, the actual value at IDO should be (equation 2} AQ. Thus
we have a construction, as in Fig. 1, which
could be used to obtain a measure of Q.
This would be particularly useful in cases
where a sharp bandpass along with skirts
has been measured. In such a case, reading
the 3db bandwidth (see below) to get the Q
would be very inaccurate, while the method
of Fig. 1 could give excellent results.

Above we have found some useful results and have so far avoided the calculation
of a general from of |T{s)|. For some additional results, this will be necessary,
and we will be using the usual:

]T(s)| - [T(ju)-T(-ju,)]
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Virtually any of the equations from (7) through (11) would be useful for actually
plugging in numbers, but the final form in equation (11) will prove useful for our
derivations. Note first that equation (11) verifies equation (2) for the response at
the center frequency. Moreover, it also tells us the important fact that (DO really is
the maximum response frequency, as the second term in the denominator is zero only
when (u = oiQ) and is otherwise positive, decreasing the response.

Continuing, we note that any two points on opposite sides of the center frequency,
which have the same response value, must have the same second term in the equation (11)
denominator. If the lower of these is ̂  , and the upper o)U, then it must be true that:

to-lA
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which means that the center frequency is the geometric mean of any two frequencies that
have the same response value.

Equation (13) is certainly true for the -3db frequencies. [Actually, we mean the
half power frequencies, where the response is down by I//? which is -3.0103... db]. If
we use equation (13), we can show that the 3db bandwidth, B, is given by:

B = u - 01 = uJ— . !!2.1 = uĴ P- _ ̂l] (14)
9 0 r.i,, 1,1.. O| di v '

But, in order for |T(s)| to be I//? down from peak, it is necessary that:

Combining equations (15) and (16), we obtain:

Q = Wg/B = (DQ/fuiy -U£ )

or, the Q is the center frequency divided by the 3db bandwidth.
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