
Reprinted from ^J. Aud. Eng. Soc.
_23_ No. 3, April 1975 with
permission of the author

The Frequency Modulation Spectrum of an Exponential
Voltage-Controlled Oscillator*

BERNARD A. HUTCHINS, JR.

Electronotes, Ithaca, N. Y. 14850

As the amplitude of a modulating voltage to an exponential VCO is increased, the pitch of the modulated
signal rises, making dynamic depth FM unrealistic. The pitch rise is proportional to /o, the first of the
modified Bessel functions. Higher order terms involving additional modified Bessel functions can be used
to compute the entire spectrum. Various methods of correcting for the pitch shift are possible, but the most
useful solution to the dynamic depth FM problem with exponential VCO's is to add some form of auxiliary
linear control.

INTRODUCTION: Exponential voltage-controlled oscillators
(E-VCOs) are those which produce a frequency which is an
exponential function of the control voltage. Ever since the advan-
tages of E-VCOs in musical systems were pointed out [1], it has
been realized, and at times noted [2] that the straightforward
frequency modulation (FM) patch would not produce a spectrum
that could be calculated from the well understood FM radio
broadcasting theory. The radio equations apply to a linear
voltage-controlled oscillator (L-VCO), not an E-VCO.

SIMPLE MODULATION PATCHES

However, imperfect understanding of the exact details of the
E-VCO FM spectrum does not prevent use of the method. For
example, the patch shown in Fig. 1 has proven useful for the
production of clangorous sounds which have a tone quality that
does not vary with pitch. Recently, Chowning [3] used a digital
computer method to demonstrate an FM synthesis method where
the depth of modulation changes dynamically as a tone pro-
gresses. The method employs the equivalent of an L-VCO. In
the apparently straightforward realization of this dynamic depth
FM method using standard analog music synthesizers (hence
E-VCOs), one tries a patch such as the one in Fig. 2. The
amplitude of the modulating signal is controlled by a voltage-
controlled amplifier (VCA) that is in turn controlled by an approp-

* An earlier version of the paper was presented September 12, 1974, at
the 49th Convention of the Audio Engineering Society, New York.
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Fig. 1. Patch for clangorous sounds.
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Fig. 2. Dynamic depth FM patch that produces pitch change.
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riate envelope. A problem immediately arises in that the E-VCO
spectrum undergoes an overall pitch shift as modulation depth
changes. While this can be a useful special effect, in general it is
disconcerting.

CALCULATING THE E-VCO SPECTRUM

Attempts to use a dynamic depth FM method have made con-
sideration of the E- VCO FM problem more important. A thorough
analysis of the problem is useful for electronic music engineers as
it both defines the problem and suggests solutions, and will also
provide the engineer with a means of fielding questions from
musicians who note the unusual behavior of their synthesizers.

The E-VCO FM problem is, like all FM problems, actually a
phase modulation problem. This can be visualized as a rotating
vector of constant magnitude, where the orientation angle of the
vector is A(t) as shown in Fig. 3. The signal voltage is then
proportional to sin A(t). The time rate of change of Aft) is then
proportional to what is termed the instantaneous frequency:

st = dA(t)/dt. (1)

In the L-VCO case, the instantaneous frequency is proportional to
the control voltage V(t):

For the standard E-VCO (1 volt per octave), the control voltage
appears in the exponent, which has a base of two:

p _y02V(() =y0 gin 2-VU) (3)

It is convenient to start with a control voltage that varies as a
cosine:

V(t) = cos(27r/m t) (4)

where Vm is the amplitude of the modulating voltage and/m is the
modulating frequency. In the L-VCO case, this gives a constant-
center frequency (the carrier) and a modulation depth AF.

1 dA(t)
Fmst = f o r o + fwm cos 2TTfm t

2-rr dt

= FCL + AF cos 27r/m t. (5)

This can be easily integrated to give the well-known FM radio
equation:

E(t) = sin Aft) = sin
AF

2"TFCL + j- sin
Jm

(6)

In the E-VCO case, cosine modulation gives:

Finst = fo exp { In 2-(Ko + Vm cos 2-rr f m t)}

= FCE exp {In 2-Vm cos 2-rrfm t}. '(7)

Fig. 3. Rotating vector model of phase modulation.

APRIL 1975, VOLUME 23, NUMBER 3

The exponential factor can be expanded according to the series [4]
00

ei cos 9 = /„ (Z) + 2 2 Ik (z) cos kd (8)
k = 1

where the Fourier coefficients are fortunately tabulated functions
known as modified Bessel functions, or hyperbolic Bessel func-
tions. The E-VCO expression forF1Ilst can then be integrated as in
the L-VCO case to give Aft), and Eft) then becomes

Eft) = sin [ 2-n FCE 7o (In 2-VJt

(2-Fcl//t-/J/»(ln2-Fw)sin27r*/»r].(9)

The first five modified Bessel functions are shown in Fig. 4. The
modified Bessel functions are related to the better known Bessel
functions of the first kind /„ by the relation

= i~nJn(iz). (10)

/o is very important as it will eventually be seen to determine the
overall position of the FM spectrum. The higher order /„ terms are
an indication of the number of terms that must be retained for a
given degree of accuracy in the spectral calculations.

A form of the FM equation that is more useful than Eq. (6), or
Eq. (9) in the E-VCO case,"is the one that reveals the spectrum of
the signal, as this is the one most easily related to the hearing
process. Conversion of the modulation equation to a spectral
equation is well known in the L-VCO case [5]. A modulation
index m is defined as AF/fm, and a series of five identities, Eqs.
(11H15), are applied to Eq. (6):

sin(x+y) = sin(x)-cos(y) + cos(x)-sin(y)

sin[m sin(x)] = 2[Ji(m)sin (x) + Ja (m)sin(3x)
+ /5 (m)sin(Sx) + •••]

(11)

(12)

1 2 3

Fig. 4. First five modified Bessel functions.
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cos[m sinCc)] = + 2 (Jt(m)cos(2x) + J4(m)cos(4x) + •••]
(13)

(14)

(15)

sin(A:)-cos(y) = V4[sin (*+>•) + sin(x-y)]

cos (x)-sin(y) = V4[sin (x+y) - sin(x-y)]

The spectral equation then becomes

Eft) = Jo (m) sin ITT FCL r

+ Jifm) [sin 27T (FCL + fm )t

- sin27r(FC L -fm)t}

+ J2 (m) [sin 277 (FCL + 2 f m ) t

+ sin27r(FCL -2fm)t]

(16)

The Jn are Bessel functions of the first kind. The spectral equation
thus shows that a series of sidebands are formed about the carrier,
and since ./_„ = (-!)"./„, the spectrum is symmetric about the
carrier with respect to the absolute values of the amplitudes.
Conservation of spectrum energy is demonstrated by the Bessel
function identity

(17)1 = 7o2 + 2

A typical spectrum is shown in Fig. 5 for the L-VCO case.
In the E-VCO case the calculations are greatly complicated by

the additional terms. Consider first a limited case where /2 is still
negligible. The E-VCO modulation equation, Eq. (9), then be-
comes

Eft) = sin [27T FCE /o ( I n 2-Km )t

+ (2 FCE lfm ) / ,(ln 2-Vm ) sin 27r/m t]. (18)

This has the same mathematical form as the L- VCO equation with

(19)

m -» (2 FCE //„ ) / ,(ln 2-VJ = 0.69 Vm (FCE Ifm). (20)

In this linear approximation, which is quite good for Vm less than
half a volt, sideband positions and amplitudes about the carrier are
calculated according to the L-VCO equations, and then placed
about a carrier that has slid up the /o curve according to the
magnitude of V'm.

It turns out that even when more terms are considered in the
E- VCO equation, the entire spectrum still shifts along the/o curve
as shown in Fig. 6. This replot of the /o function has additional
labels to show the In 2-Vm axis, as well as the total frequency
deviation and spectrum slide in units of semitones. It is the shift
implied by this curve that is responsible for the (generally) annoy-
ing pitch variation that occurs as modulation depth changes while
a tone progresses.

When three or more terms must be kept, calculations must go
beyond the simple expansion about the L-VCO solution. For

m=i.6

example, when It can be neglected, but not/3, the modulation
equation becomes

Eft) = sin [ 2rr FCE 7o (In 2-Vm )t + mi sin 2trfm t
+ m2 sin 4irfm t + ma sin 6irfm t] (21)

where

mi = (2 FCE lfm ) 7,(in 2-Vm ) (22a)

ma = <FCE lfm ) 72(ln 2-Vm ) (22b)

ms = (2/CE / 3/m ; /3(ln 2-Km ). (22c)

It is interesting that this equation has the same form that is
obtained by considering the simultaneous modulation of a L-VCO
with more than one sine wave. This can be understood by consid-
ering that the E- VCO expression for Finst could be duplicated by
applying an appropriate periodic waveform to the L-VCO. In the
E-VCO case, the additional sine waves are all harmonically re-
lated, but the more general problem was considered as far back as
1938 [6]. The solution consists of the application of Eq. (11) and
its corresponding identity

cosCt+y) = costt)-cos(y) + sin(;t)-sin(y) (23)

to Eq. (21), considering the first term as x and the remaining terms
as y, and repeating this process until all the terms are used up. The
final result is [7]

Eft)
00 r s i

= 2 fl-M"^
*. - — L j = ' J

X sin [2-n- /o (In 2-KJFCE + ^ 2lr *«/- 1 '• (24)

12
.69

24
1.39

36
2.06

48
2.77

Fig. 5 A typical L-VCO spectrun

202

Fig. 6. Shift of spectrum with increasing niiKluliiliun voltage Km.
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For the four-term case, this equation can be greatly reduced:

U U U

= 2 2 2
L = -U M = -V N = -U

x sin2ir[/0 (In2-Vm

Lfm+2Mfm+ (25)

In the above equation, U is the highest order/, index which must
be considered, corresponding to the smallest JL which is still
significant. To further simplify the calculations, consideration of
the overall spectrum shift can be set aside and added in later. For
computer calculations, the procedure is then as follows.

1) Select Vm and the ratio FCE I f m .
2) Determine all significant values of 7n(ln 2-Vm).
3) From the/,, values, calculate mi, mi, ma, • • • and from these,

calculate all significant values of Jn(mk).
4) Execute a nested "do loop" for each summation, three in

the case of Eq. (25), and inside the innermost do loop
a) Determine the sideband in question: L + 2M + 3JV;
b) Calculate JL (mi) JM (mi) /v (ms) and add this to any

previous contribution for the same sideband.
5) Reposition the sidebands. Space them at intervals of fm

about the carrier (zeroth sideband) shifted according to 7o(ln
2-KJ.

6) Any sideband that has a negative frequency should be
changed to a positive frequency and be considered reflected back
into the positive spectrum according to sin (—x) — —sin (x).

EXPERIMENTAL VERIFICATION

These theoretical calculations can be verified with an experi-
mental setup employing a spectrum analizer. A redrawn version of
an experimental spectrogram is shown in Fig. 7. The predicted
spacing of the sidebands at intervals of fm and the predicted
spectrum slide is observed. Also, the linearlike structure for
Vm = 0.5 and the much more complicated pattern for Vm = 1 can
be seen. In particular, there are more significant sidebands above
the carrier than below.

Fig. 8 shows a plot of calculated and experimental sideband
amplitudes for some 47 sidebands from six different E-VCO
spectra. The agreement is within expected experimental and com-
putational accuracy.

EXAMPLE SPECTRA

With this experimental verification completed, calculations can
be viewed with more confidence. Fig. 9 shows a complete series
of calculated amplitudes for the ratio FCKlfm= 8. When the ratio
is lowered to 2.0, it is easier for significant sidebands to reach zero
frequency and below. These sidebands are reflected back into the
positive spectrum (and are experimentally observed as predicted).
Such sidebands are very common in the L-VCO case, but are
relatively rare in the E-VCO case for two reasons. First, the
instantaneous frequency can never reach zero, and in general there
are very few significant sidebands produced outside the range of
Flnst. Second, as modulation depth increases and more and more
sidebands start to appear at the extremes of the spectrum, the
spectrum shifts up, pulling the lower ones away from zero. These
lower sidebands often begin to become significant while in their
reflected positions. In this case, as the spectrum shifts up, these
sidebands are pulled down and around zero where they reemerge
as normal lower sidebands. Sidebands behaving in this manner

APRIL 1975, VOLUME 23, NUMBER 3
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Fig. 7. Experimental spectrogram forFCE //„ = 8; Vm = 0, 0.5, and
1.0

EXPERIMENTAL

Fig. 8. Comparison of calculated and experimental sideband
amplitudes.
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can be seen in Fig. 10 forFCE Ifm = 2, and in Fig. 11 forFCE I
fm = V4.

In the process of calculation, the power in each sideband, which
goes as the amplitude squared, is easy to compute and tabulate. A
surprising result is noted: while there are more significant
sidebands above the carrier, there is more power produced below.
Both these results can perhaps be understood in terms of the graph

I . I I«1

2.5

2

1.5

1

0.5
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1

J

1 , 1 , I l l i , .

1 1 , ,

1 , .

I ,

Fig. 10. Spectra for FCE //„ = 2.
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of the E-VCO instantaneous frequency of Fig. 12. The instan-
taneous frequency goes much higher above the carrier than below,
and therefore passes over more possible sideband positions on the
high side, hence activating more of them. Although the carrier
slides up with increased modulation depth (from the solid to the
dotted line), the points at which the instantaneous frequency
crosses at equal time intervals remain on the original carrier line.
Therefore, the instantaneous frequency spends more time below
the shifted carrier than above, and more power is distributed to the
lower sidebands, even though there are fewer of them.

Fig. 12 is also helpful in understanding the carrier shift along
the 7o curve. The areas between the Fimt curve and the shifted
carrier are equal on both sides. This is equivalent to the dc level
that would be required to produce the same Flnst curve with a
L-VCO.

HARMONIC SPECTRA

An interesting application of the FM method is the production
of harmonic spectra by allowing one of the sidebands to fall on
zero frequency. In this case the carrier, all normal sidebands, and
any significant reflected sidebands will fall on positions that are
multiples of a common fundamental. In the E-VCO case, the
condition for a harmonic spectrum is

//» =
1

^ 7o(ln 2-yj m

where m and m are integers. A typical harmonic spectrum is
shown in Fig. 13. In the E-VCO case, unlike the L-VCO case, the
condition for a harmonic spectrum is a function of Vm, making the
condition impossible to maintain during dynamic depth modula-
tion. A zero-frequency component in the harmonic spectrum
actually just occurs as a dc weighting of the waveform. The actual
amplitudes obtained for a harmonic spectrum depend on the rela-
tive phase of the original carrier and the modulating waveform,
since reflected sidebands will have a phase that depends on these
initial conditions. Control of this phase is difficult with ordinary
synthesizers.

SUGGESTED SOLUTIONS

The theory presented has allowed the calculation of the E-VCO
FM spectrum, and outlined the cause of the pitch shift problem
encountered during dynamic depth FM. Several solutions to this
problem are suggested.

A patch such as the one in Fig. 14 can be tried. Here the
envelope controlling the modulation depth is inverted and used to
pull the pitch back down as the modulation depth increases. When
this inverted voltage is fed directly to the VCO, correction is

Fig. 11. Spectra for FCE //„ = <A.
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Fig. 12. Instantaneous frequency for one cycle of modulation.
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collector current to base-emitter voltage (proportional to control
voltage) response of transistors [8]. If the standing current in these
exponential current sources is linearly modulated, linear FM re-
sults. This modulation is before the exponential conversion, but is
a collector current modulation, not a base-emitter voltage modula-
tion. Thus the modulation remains linear at the output; only the
limits of the current excursion depend on the base-emitter voltage.
If the modulating frequency is tracking the original carrier, the
total excursion for fixed modulation depth of the standing current
results in a constant modulation index, since both AF and/m are
proportional to the control voltage. This constant modulation
index linear FM gives a constant sideband structure relative to the
carrier and is thus a constant timbre form of linear FM, and
outwardly seems the most musically useful.

Another method is to simply add a linearly modulated current
to the exponential current on the way to the current-controlled
oscillator. This results in a constant frequency deviation inde-
pendent of control voltage, and (approximately) constant
bandwidth linear FM. This same feature can also be used to offset
two otherwise tracking oscillators by a fixed number of Hertz so
that the beat rate between them remains independent of frequency.

Both of the above methods will result in linear FM which does
not exhibit a pitch shift during dynamic depth FM. A final solution
that can be added externally to existing E-VCO's is a standard
logarithmic amplifier [8]. Such an amplifier must offset standard
bipolar signals so that they are always positive, take Logz of the
resulting voltage, and feed'this directly to a 1 volt per octave
control input. This results in constant frequency deviation linear
FM, but since it is before the exponential converter, it can not be
used for a linear offset. A simple log amp that can be used with
existing E-VCO's is shown in Fig. 15. Fig. 16 shows how the
three linear FM methods discussed above are applied to a typical
E-VCO.

AJYJ
1CORRESPONDING
WAVEFORM

Fig. 13. Harmonic spectrum; Vm = 2.61, /o(ln 2-VJ = 2, FCE
/„ = 1, and corresponding waveform.
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Fig. 14. Patch used to correct for pitch shift.

incomplete as the upward response to the envelope through the
VGA is along the /o curve, while the direct path is the normal
exponential. With the direct connection, complete correction is
obtained only at one voltage level of the envelope, typically set at
the sustain level. Incomplete correction during the attack phase
often adds spectral features that enhance the musical quality of the
tones. The same incomplete correction during the final decay
phase, however, causes pitch variations that are generally bother-
some. This can be partially remedied by using the same envelope
for modulation depth control and amplitude control, and truncat-
ing the exponential tail early.

The correction can be completed to first order by squaring the
envelope voltage before inverting and feeding back to the VCO.
The squaring operation can usually be done with an available
multiplier or "ring modulator" on the synthesizer. The normal
exponential response is 2y, so the response to V- goes as 1 + In
2-K2 + ••• or approximately 1 + 0.69 K2. The/o(ln 2-Km) curve
can be approximated by 1 + 0.1 19 Vm

2 + ••• , so by adjusting
these levels, a degree of correction can be obtained that is quite
satisfactory for small modulation depths. Since a correction vol-
tage is fed to the VCO which normally setsFCE according to initial
control voltages before modulation is applied, the ratio FCE I fm
varies dynamically as well, and this further complicates analysis.

A second and easier to use solution is to provide a linear control
input to the E-VCO to supplement normal exponential controls.
Typically, an E-VCO is basically a voltage-controlled exponen-
tial current source fed to a current-controlled ramp generator
(capacitor with some form of discharge, or the current can be
reversed). The exponential current source uses the exponential
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CONCLUSIONS

While it is possible to calculate most of the features of the FM
spectrum of an E- VCO, the complexity of the calculation process
and the difficulty of setting analog controls to realize a set of
conditions makes everyday application of these calculations im-
practical. However, an understanding of the theory does provide
an understanding of the sounds realized by FM techniques on
standard synthesizers, and suggests that some sort of linear control_
should be employed when attempting to use a dynamic depth FM
synthesis method. Additional thought should be given to the
possibility of reversing the process so that a given spectral evolu-
tion could be realized in terms of time-dependent modulation

HODUUTICH
UCPOT

otnwr
(to a 1-volt/octave

control Input) *
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Fig. 15. Logarithmic amplifier for linear input control.
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CONSTANT FREQUENCY CONSTANT FREQUENCY
•DEVIATION LINEAR FM - DEVIATION LINEAR FM

T WITH LINEAR OFFSET

LOG AMP jT* LINEAR V/I

EXPONENTIAL
INPUTS

2k -K). 35VC

TANT
LAT I ON

AR FM

j ! »
1 !Mk :

1.3k
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\̂'PT 10k

MXK

EXISTING EXPONENTIAL VCO

Fig. 16. Typical existing E-VCO illustrating basic methods of adding
linear FM.

parameters. In this pursuit, the E-VCO with pitch pull-down
correction may prove a more useful approach, as a variety of
sideband distributions are possible, unlike the L-VCO which has
only the one case. For general use of the dynamic depth method,
simple linear controls seem the most useful.
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