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APPLICATION OF A REAL-TIME HADAMARD
TRANSFORM NETWORK TO SOUND SYNTHESIS
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A Hadamard transform (HT) analyzes a waveform into Walsh
function spectral components in the same manner that a fast
Fourier transform (FFT) analyzes 0 waveform mto sine wave
components. In contrast 1o the FFT, a real-time HT network is
easy Lo construct from analeg components as the Bow graph does
not involve complex number arithmetic. The separated Walsh
spectral compoments can be manipulated in & variety of ways
before applying them to the inverse transform and time ordering
the output for an sudio signal.

INTRODUCTION: Some methods of music synthesis
with Walsh functions were examined in a previous paper
(10, It was suggested that many processes could be per-
formed with or on the Walsh functions, and that these could
be considered instead of the mare usual Fourier compo-
nents if there is some advantage or saving by employing the
Walsh functions. While the ear does not hear Walsh func-
tions except in terms of their Fourier components and the
repetition rate of the paterns in the Walsh functions, certain
processes will be subjectively similar. In many cases in
electronic music, it is the general nature of the sound
synthesis process rather than the exact details of the process
that is imporiant, For example, with subtractive synthesis,
the variation of a filter's characteristics in time is more
fundamental to the process than the time-independent de-
tails such as filter 1ype, input waveform, or cutoff freguen-
cy. In additive synthesis. or in processes that involve
analysis into a set of harmonics, Walsh functions may
prove to be subjectively similar to the sume process done
with Fourier harmonics,

An example of such a process is the analysis and resyn-
thesis (with some manipulation of the spectral coefficients)
of an input waveform. An analog method of doing the fast
Fourier transform (FFT) is possible [2]. but this would in-
volve a means of handling the complex number arithmetic.
The Hadamard transform (HT) has the distinct advantage
that only real numbers are involved, Thus an analog HT
board can be considered 1o analyze a section of a wave-
form. A similar network performing the inverse transform
(HT™') can then resynthesize the section as altered by
coefficient manipulation.

WALSH FUNCTIONS AND THE HADAMARD
TRANSFORM

Walsh functions form a complete set of orthonormal
functions which are all rectangulas. The first eight Walsh
functions are shown in Fig. 1. Walsh—Fourier analysis can
be used to represent any periodic waveform. When the

signal to be represented is discrete in time (for example, a
sampled analog waveform), then the Walsh-Fourier
coefficients can be determined from the discrete Walsh
transform. A fast computer method of doing the discrete
Walsh transform is the HT which is derived in & manner
similar to the FFT. A flow graph of the HT for an eight-
point input is shown in Fig, 2, This HT gives the Walsh—
Fourier coefficients corresponding to the first eight Walsh
functions in Fig. 1. The coefficients are in a scrambled
arder.

The HT network is also its own inverse, except the final
(1/8) anenuator is not present on the HT—! outputs, The
inputs X are just real physical voltages, hence represent real
numbers, and all node voltages in the network are real, The
multiplying factors are all real and equal 1o either +1 or
—1. Thus the aodes in the Aow graph can all be realized

with asimple plifier summer or
summer, as required. For an HT network with 27 input
points, m2™ operational-amplifiers are required, and each
T i amplifier has fated with it four resistors.
The actual circuits that can be used for the various nodes are
shown in Fig, 3.
To put things in perspective, for a discrete set of samples,
analysis can be by discrete Walsh transform (DWT) or by
discrete Fourier transform (DFT). The DWT is more
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Fig. 2. Flow graph of Hadamard transform.
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efficient since it does not use complex numbers, and in
cases where the Walsh function set is synchronized with the
sampling intervals, the DWT gives an exact representation
of the sampled waveform. Both the DWT and the DFT have
similar fast computer algorithms, the HT and the FFT,
respectively. The saving with these fas algorithms is due 10
a reduction in the total number of operations.

It is & curious fuct that when we choose 10 analyze a
waveform using Walsh functions and an analog method,
the HT may not be the most efficient, depending on the
number of input paiats. The DWT is & matrix-vector prod-
uct, and may be realized with a summing amplifier for each
output point. Each output speciral coefficient is a weighted
sum (+1 or —1) of all the input samples. If the transform
wususrs or am pnmlf. lhe DWT would require only 2™
with m2™ for the HT.

The tradeof? is seen whs‘n the requutd number of resistors
for the two methods is considered. The DWT requires 27
resistors for summing and two more on each operational-
amplifier [3], [4] for cach summing point. This means that
(27 + 2-2™ resistors are required. Table I shows the
number of components required in both cases. Since the
number of resistors required for the DWT goes as (2™)%, the
HT will become more efficient for large networks (probably
somewhere between m = 6 and m = T), However, for
networks of practical size im = 3 or 4), the DWT realiza-
tion should be used instead of the HT.

Ta illustrate the DWT realization for eight points, con-
sider the use of the eight-input summer in Fig. 4. The circui
must perform the first-row sum of the matrix—vector prod-
uet. To find the first Walsh coefficient comresponding to the
‘Wal (1) content in the waveform), the ordered input sam-
ples must be muitiplied by either + 1 or — 1 according to the
value af Wallli in the same segment, and summed.

SEQUENCING FOR ANALYSIS IN TIME

Regardiess of whether the actual transform is realized by
the HT or the DWT, we call it the HT and treat it as a
network with eight inputs that represent time samples. and
eight outputs that represent the Walsh coefficients.

To be useful for processing audio signals, the inputs must
be time ordered. Thus each input is connected to the output
of its own sample-and-hold circuit. These are sequenced so
that each sample-and-hold 1akes every eighth sample of the
analog waveform that is common to the inputs of all eight
sample-and-hold circuits. After the eighth sample is
|paded. the correct Walsh analysis of the last eight samples
(the fast frame) appears at the output of the HT. This
analysis can be transferred to additional sample-and-holds
0 that the analysis of the next frame can start. The neces-
sary sequencing can be provided with a divide-by-zight
counter that provides a pulse to tigger the sample-and-hold
cormesponding o the count. The type 74154 TTL data
distributor is convenient for this purpose. The circuit is
shown in Fig. 6.

Sample-and-hold circuits can be formed with CMO3S
analog switches (type 4016) or other convenient circuits.
An inexpensive and satisfactory circuil is shown in Fig. 7.

In the actual experimental Aetwork, the inverse trans-
fosrmn s used as well, and this is also trggered by the seme
sequencer. The full basic scheme is outlined in Fig. 8.

The operation of the sequencer and connection of the
sample-and-hold circuits should be noted. The eight input

In a similar manner, the circuit for the Cy coefficient is
given in Fig. 5 as a second example. The other six summers
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Fig. 4. DWT circuit for Cy.
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Fig. 5. DWT circuit for Cy.
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sample-and-hold circuits have a common input. and are
clocked in sequence as noted above. This loads eight input
samples. When the enable pulse on the eighth sample-and-
hold falls, this triggers a monostable that provides a smglc
pulse 1o trigger y all eight i
sample-and-holds, The coefficiem sample-and-holds each
have one input and one output. Once the coefficients are
stored, they are subjected to some form of manipulation.
The manipulated coefficients are fed 1 the HT ! network
which synthesizes the first frame of the reconstructed
. When the next seq pulse arrives, the first
imput sample-and-hold is loaded with a new value, but this
does not change the stored coefficients on the other side of
the HT network. At the same time that the first input is
reloaded, the first output sample-and-hold is wiggered. All
output sample-and-hold circuits have a common hold
capacitor and a common buffer. The outputs of the HT™
network are thus time ordered by unloading them in se-
quence as new inputs to the HT network are being loaded.
+The output voltage of the whole scheme is just the HT-*
output last sampled. Observe that if the coefficients are
passed directly without manipulation, and circuit emrors.
can be neglected, the output wavefom is an exact replica
of the input samples delayed by eight clocking intervals.

COEFFICIENT MANIPULATION

In the synthesis of musical tones it is known that the
addition of different hurmonics. each with its own indi-
\ndua] time dependence, is useful. If the coefficients are

pulated with liers, this time d can be
applicd with envelopes. As a special case, if all the
coefficients are held at one, and cach of them is then
subjected to enveloping before applying them to the HT ™!
network, an additive synthesis scheme equivalent o the
earlier study [1] results. The additional capability of the
new system is that this resynthesis can be done fmm an
analyzed pulation of the by
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Fig. 8. Overall Hadamard transform scheme.

RELATIONSHIP BETWEEN THE CLOCK RATE
AND INPUT FREQUENCY

The relationship between the clock rate and input fre-
quency is very important, The scual clocking frequency of
interest is the frame rate f;, which is one eighth the clocking
rate, In general, small changes in the relationship between
the input frequency f and f; can cause great changes in the
ourput.

If f; and frare the same, the coefficients do not change in
time, and the result of coefficient manipulaticn is similar o
Ihe case when the coefficients are held at one. When the two
ies are nearly the same, a variety of “'beating™

means of :n\-t]o'pes remains a primary use in musical appli-
cations of the HT method.

The coefficients can be switched in or out, and this results
in & sequency filter. When about half the cocfficient lines
are opened up, a sort of sequency formant filter results. The
position of the sequency peaks relative to input frequencies
can be controlled by varying the clocking rate. In addition,
the frequency input to the filter can be vaned. Some addi-
tional slew rate limiting of the network sample-and-holds
can provide additional peaks in the output structure,

effects are achieved. For example, if the inpur is a sine
wave, a major part of the spectral energy will shift periodi-

cally between the Wal{ 1) and the Wali2) coefficients as the
phase shifts in and cur. This opens up the possibility of
using these slowly varying coefficients as control signals,
since they recover the bear envelope. Integer ratios other
than 1:1 do not give constant coefficients, bur do give
periodic output waveforms if the coefficients are not ma-
nipulated in time. Near integer multiples produce compli-
cated beating effects.
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Fig. 6. Sequenver for Hadamand wansform.
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When fyis much greater than £, the frame is a relatively
small portion of the inpur waveform, Mest of the spectral
information in this case is carried in the Wali0) or de
coefficient, IF the Wal(fl) coefficient is blocked, the frame-
to-frame processing can vary greatly and can result in some
very complex sounds and changing rimbre parterns. On the
other hand, when f; is much smaller than f, in general,
several cycles of the input will be crowded into one frame,
often in violation of the sampling theorem. Output seg-
ments meay be close 10 pseudo random in this case. 1 fisin
the audio range, however, a pitch comesponding 1o 8, will
be heard.

ADDITIONAL OUTPUTS

In general, any voltage cun be tapped from any point in
the network and used as a signal or control voltage as
desired. The eventual goal is to obtain musically useful
sounds, and nothing should be ruled out. In this regard it
should be noted that engineening failures of the network
may not be important and may even be useful. A panicular
example s the vidlation of the sampling theorem {#re-
quency aliasing) which produces interesting patterns and
SEQUENCES.

Once analysis is done in terms of Walsh functions, it is
possible to use 3 matrix-vector product 1o convert to sines
and cosines. A very crude sort of Fourier spectrum analyzer
is thus possible, but again, it should be considered as a

tional outpat that is probably most useful as a control
signal. particularly for filiers. The conversion scheme is
shown in Table I

FREQUENCY SHIFTING IMPLICATIONS

The possibility that Walsh coefficients can be manipu-
lated to shift the frequency of an input sine wave is implied
by the phase dependence of the Walsh coefficients of a sine
wave. If the phase angle between a sine wave and Wali 1) is
8, then the C, coefficient is calculated as

pew
) = I sin (& — 8) Wal (1, x) dx
L]

e
j (sincos 6 — cosx sin 6 Wal {1, x)dx
v

= cos 8 C, (D).

In the same manner,Cz (#) =C, (00 sin 8, C5 () = C, ()
cos f, O (#) = C5(0) ( —sin ), etc. Thus if the coefficients
are made to vary as either sines or cosines, the phase will he
shifted, and this can produce a frequency shift. In the HT
network the coefficients would be manipulated by appiving
the outputs of a quad illator 1o the multipli
contrelling the coefficients. This frequency shift is
rated in Fig. 9.

Tabie 111, Conversion from logical to arithmetic sutocormelation.

illus-

possible control cutpue rather than any sort of scientific At
ing i A ion matrix for up 10 16 suwcorelation Components of Logical Amtecorrelstion (4]
points is shown in Table Il The accuracy could be im- i T—_ —— e
proved by using more poiats in the transform, Iy i
In Fourier analysis the power spectrum appears as the g! g‘i x
Fourier transform of the autcorrelation function. By anal- &) o
ogy, if the Walsh coetlicients are squarcd to give the power - £ ﬁ- e
spectrum, this ¢an be fed 1o the HT ! network 1o give what 5] -, -1,
s e i . ot P
is called the *“logical autocorrelation function™ [3]. It Is e AL, +21, 4L
easy to conven the Jogical sutocorrelation to the arithmetic g, o iy
autocorrelation function by a simple matrix-vector prod-  &u %n T2 -2y 42y L
uet, This conversion could be done using operational- 5 L —aly, v, -2y 4L,
amplifier summers on the output of the HT™ networks g-- ﬁu- :ﬁ'w: .
before the output sample-and-hold. This provides an addi- # BT T
Table I1. Matris transform hesween Walsh and sinewave harmanics,
Stmewave Harmonic o
Wil
Harmosic First Second Third Faurth Fifth Sixth Seventh
wal {1y 0,637 00 0.212 EYEE oe & 090 0o
wal (3) 0.0 06357 0.0 0.0 0.0 0.212 00 0.0
Wal (%) ~0.264 a0 0.512 0.0 0.307 0.0 ~0.096 0.0
Wil (7) 0.0 a0 0.0 0.637 0.0 [ 00 0.0
Wal (9) —0.0825 0.0 ~0.342 0.0 D46 0.0 01385 0.0
wal (11} og 01264 0.0 0.0 () 0412 0.0 0.0
Wal (11) -0.117 0.0 D140 0.0 ~0.190 0.0 0.456 0.0
Wal (15) 0.0 0.0 0.0 0.0 o0 0.0 0.0 0.637
wal (17) —0012% o -2 0.0 —0.100 ag -0.37% 00
Wal (19) 0.0 -0.052% 0.0 0o 1) ~1.342 0.0 0.0
Wal (21) 000817 0.0 —0.102 0.0 -0.246 0.0 0.154 0.0
Wal (23) 0.0 0.0 0.0 —D.264 ) 0.0 0.0 [
Wal (28 —0.260 0.0 ~D.154 0.0 .16+ 0.0 0.030 0.0
Wal (37) o —127 0.0 0.0 a0 G4 oo oo
Wal (29) ~0.627 o 006+ 0.0 ~0.068 00 0,07 0.0
Wal (31} 0.0 (1] 0.0 o 00 0.0 oo oo
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AECYCLING THE OUTPUT

If an inverter is placed after the output, and this is fed
back to the input, the HT network will oscillate. This can be
useful when the coeffici are lled by ipli
and envelopes, as the oscillation loop is broken when the
envelopes are all zero, However, the output is not necessar-
ily eentrolled by the envelopes in this case. as a loop gain of
ane must be obtained for any output at all. Thus amplitude
of the attack is controlled mainly by the natural buildup of
oscillation. On the other hand, decay can be controlled to
some extent with the envelopes.

CONCLUDING REMARKS

As of this writing, the HT technique has been shown 1o
be useful for the synthesis of complex sounds and complex
sequences of sounds. Several new compositional
techniques seem possible with the HT. Fusther experimen-
tation should lead o additional useful techniques.
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