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INTRODUCTION: Some methods of music synthesis
with Walsh functions were examined in a previous paper
[I]. Il was suggested that many processes could be per-
formed with or on the Walsh functions, and that these could
be considered instead of the more usual Fourier compo-
nents if there is some advantage or saving by employing the
Walsh functions. While the ear does not hear Walsh func-
tions except in terms of their Fourier components and the
repetition rate of the patterns in the Walsh functions, certain
processes will be subjectively similar. In many cases in
electronic music, it is the general nature of the sound
synthesis process rather than the exact details of the process
that is important. For example, with subtractive synthesis,
the variation of a filter's characteristics in time is more
fundamental to the process than the time- independent de-
tails such as filter type, input waveform, or cutoff frequen-
cy. In additive synthesis, or in processes that involve
analysis into a set of harmonics. Walsh functions may
prove to be subjectively similar to the same process done
with Fourier harmonics.

An example of such a process is the analysis and resyn-
thesis (with some manipulation of the spectral coefficients)
of an input waveform. An analog method of doing the fast
Fourier transform (FFT) is possible [2], but this would in-
volve a means of handling the complex number arithmetic.
The Hadamard transform (HT) has the distinct advantage
that only real numbers are involved. Thus an analog HT
board can be considered to analyze a section of a wave-
form. A similar network performing the inverse transform
(HT"1) can then resynthesize the section as altered by
coefficient manipulation.

WALSH FUNCTIONS AND THE HADAMARD
TRANSFORM

functions which are all rectangular. The first eight Walsh
functions are shown in Fig. 1. Waish-Fourier analysis can
be used to represent any periodic waveform. When the

signal to be represented is discrete in time (for example, a
sampled analog waveform), then the Walsh-Fourier
coefficients can be determined from the discrete Walsh
transform. A fast computer method of doing the discrete
Walsh transform is the HT which is derived in a manner
similar to the FFT. A flow graph of the HT for an eight-
point input is shown in Fig. 2. This HT gives the Walsh-
Fourier coefficients corresponding to the first eight Walsh
functions in Fig. I. The coefficients are in a scrambled
order.

The HT network is also its own inverse, except the fina!
(1/8) attenuator is not present on the HT~' outputs. The
inputsX are just real physical voltages, hence represent real
numbers, and all node voltages in the network are real. The
multiplying factors are all real and equal to either +1 or
— 1. Thus the nodes in the flow graph can all be realized
with a simple operational-amplifier summer or a differential
summer, as required. For an HT network with 2m input
points, m2"' operational-amplifiers are required, and each
operational-amplifier has associated with it four resistors.
The actual circuits that can be used for the various nodes are
shown in Fig. 3.

To put things in perspective, for a discrete set of samples,
analysis can be by discrete Walsh transform (DWT) or by
discrete Fourier transform (DFT). The DWT is more

Fig. 2. Flow graph of Hadamard
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efficient since it does not use complex numbers, and in
cases where the Walsh function set is synchronized with the
sampling intervals, the DWT gives an exact representation
of the sampled waveform. Both the DWT and the DFT have
similar fast computer algorithms, the HT and the FFT,
respectively. The saving with these fast algorithms is due to
a reduction in the total number of operations.

It is a curious fact that when we choose to analyze a
waveform using Walsh functions and an analog method,
the HT may not be the most efficient, depending on the
number of input points. The DWT is a matrix-vector prod-
uct, and may be realized with a summing amplifier for each
output point. Each output spectral coefficient is a weighted
sum (+1 or -1) of all the input samples. If the transform
consists of 2m points, the DWT would require only 2™
operational-amplifiers as compared with m2m for the HT.
The tradeoff is seen when the required number of resistors
for the two methods is considered. The DWT requires 2m

resistors for summing and two more on each operational-
amplifier [3], [4] for each summing point. This means that

•(2™)* + 2-2m resistors are required. Table I shows the
number of components required in both cases. Since the
number of resistors required for the DWT goes as (2"1)2, the
HT will become more efficient for large networks (probably
somewhere between m = 6 and m = 7). However, for
networks of practical size (m = 3 or 4), the DWT realiza-
tion should be used instead of the HT.

To illustrate the DWT realization for eight points, con-
sider the use of the eight-input summer in Fig. 4, The circuit
must perform the first-row sum of the matrix-vector prod-
uct. To find the first Walsh coefficient (corresponding to the
Wai (I) content in the waveform), the ordered input sam-
ples must be multiplied by either +1 or -1 according to the
value of Wal(l) in the same segment, and summed.

In a similar manner, the circuit for the C5 coefficient is

are set up in the same way, except for the Wal(O) coefficient
(the dc term) which is an eight-input positive summer.

SEQUENCING FOR ANALYSIS IN TIME

Regardless of whether the actual transform is realized by
the HT or the DWT, we call it the HT and treat it as a
network with eight inputs that represent lime samples, and
eight outputs that represent the Walsh coefficients.

To be useful for processing audio signals, the inputs must
be time ordered. Thus each input is connected to the output
of its own sample-and-hold circuit. These are sequenced so
that each sample-and-hold takes every eighth sample of the
analog waveform that is common to the inputs of all eight
sample-and-hold circuits. After the eighth sample is
loaded, the correct Walsh analysis of the last eight samples
(the last frame) appears at the output of the HT. This
analysis can be transferred to additional sample-and-holds
so that the analysis of the next frame can start. The neces-
sary sequencing can be provided with a divide-by-eight
counter that provides a pulse to trigger the sample-and-hold
corresponding to the count. The type 74154 TTL data
distributor is convenient for this purpose. The circuit is
shown in Fig. 6.

Sample- and-hold circuits can be formed with CMOS
analog switches (type 4016) or other convenient circuits.
An inexpensive and satisfactory circuit is shown in Fig. 7,

In. the actual experimental network, the inverse trans-
form is used as well, and this is also triggered by the same
sequencer. The full basic scheme is outlined in Fig. 8.

The operation of the sequencer and connection of the
sample-and-hold circuits should be noted. The eight input

Fig. 4. DWT circuit ford.

Fig. 5. DWT circuit forC5.

Number of Poin i (DWT) Resistors (DWT)
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sample-and-hold circuits have a common input, and are
clocked in sequence as noted above. This loads eight input
samples. When the enable pulse on the eighth sample-and-
hold falls, this triggers a monostable (hat provides a single
pulse to trigger simultaneously all eight coefficient
sampte-and-hoids. The coefficient sample-and-holds each
have one input and one output. Once the coefficients are
stored, they are subjected to some form of manipulation.
The manipulated coefficients are fed to the HT"1 network
which synthesizes the first frame of the reconstructed
waveform. When the next sequencer pulse arrives, the first
input sample-and-hold is loaded with a new value, but this
does not change the stored coefficients on the other side of
the HT network. At the same lime that the first input is
reloaded, the first output sample-and-hold is triggered. All

capacitor and a common buffer. The outputs of the HT~'
network are thus time ordered by unloading them in se-
quence as new inputs to the HT network are being ioaded.

•The output voltage of the whole scheme is just the HT"1

output last sampled. Observe thai if the coefficients are
passed directly without manipulation, and circuit errors
can be neglected, the output waveform is an exact replica
of the input samples delayed by eight clocking intervals.

COEFFICIENT MANIPULATION

In the synthesis of musical tones it is known that the
addition of different harmonics, each with its own indi-
vidual time dependence, is useful. If the coefficients are
manipulated with multipliers, this time dependence can be
applied with envelopes. As a special case, if all the
coefficients are held at one, and each of them is then
subjected to enveloping before applying them to the HT~'
network, an additive synthesis scheme equivalent to the
earlier study [1] results. The additional capability of the
new system is Ihat this resynthesis can be done from an
analyzed waveform. Manipulation of the coefficients by
means of envelopes remains a primary use in musical appli-
cations of the HT method.

The coefficients can be switched in or out, and this results
in a sequency filter. When about half the coefficient lines
are opened up, a sort of sequency formant filter results. The
position of the sequency peaks relative to input frequencies
can be controlled by varying the clocking rate. In addition,
the frequency input to the filter can be varied. Some addi-
tional slew rate limiting of the network sample-and-holds
can provide additional peaks in the output structure.

Fig. 7. Sample-and-hold circuit.

Fig. 8. Overall Hadamard transform scheme.

RELATIONSHIP BETWEEN THE CLOCK RATE
AND INPUT FREQUENCY

The relationship between the clock rate and input fre-
quency is very important. The actual clocking frequency of
interest is (he frame rate/,, which is one eighth (he clocking
rate. In general, small changes in the relationship between
the input frequency/, and/, can cause great changes in the
output.

If/i and//are the same, the coefficients do not change in
time, and the result of coefficient manipulation is similar to
the case when the coefficients are held at one. When the two
frequencies are nearly the same, a variety of "beating"
effects are achieved. For example, if the input is a sine
wave, a major part of the spectral energy will shift periodi-
cally between the Walfl) and the Wal(2) coefficients as the
phase shifts in and out. This opens up the possibility of

since they recover the beat envelope. Integer ratios other
than 1:1 do not give constant coefficients, but do give
periodic output waveforms if the coefficients are not ma-
nipulated in time. Near integer multiples produce compli-
cated beating effects.



When// is much greater than/,-, the frame is a relatively
small portion of the input waveform. Most of (he spectral
information in this case is carried in the Wal(O) or dc
coefficient. If [he Wal(O) coefficient is blocked, the frame-
to-frame processing can vary greatly and can result in some
very complex sounds and changing timbre patterns. On the
other hand, when// is much smaller than/,, in general,
several cycles of the input will be crowded into one frame,
often in violation of the sampling theorem. Output seg-
ments may be close to pseudo random in this case. If//is in
the audio range, however, a pitch corresponding 10 8//wili
be heard.

ADDITIONAL OUTPUTS

In general, any voltage can be tapped from any point in
the network and used as a signal or control voltage as
desired. The eventual goal is to obtain musically useful
sounds, and nothing should be ruled out. In this regard it
should be noted ihai engineering failures of the network
may not be important and may even be useful. A particular
example is the violation of the sampling theorem (fre-
quency aliasing) which produces interesting patterns and
sequences.

Once analysis is done in terms of Walsh functions, it is
possible to use a matrix-vector product to convert to sines
and cosines. A very crude sort of Fourier spectrum analyzer
is thus possible, but again, it should be considered as a
possible control output rather than any sort of scientific
measuring instrument. A conversion matrix for up to 16
points is shown in Table II. The accuracy could be im-
proved by using more points in the transform.

In Fourier analysis the power spectrum appears as the
Fourier transform of the autocorrelation function. By anal-
ogy, if the Walsh coefficients are squared to give the power
spectrum, this can be fed to the HT~' network to give what
is called the "logical autocorrelation function" [5]. It is
easy to convert the logical autocorrelation to the arithmetic
autocorrelation function by a simple matrix-vector prod-
uct. This conversion could be done using operational-
amplifier summers on the output of the HT"1 networks
before the output sample-and-hold. This provides an addi-

tional output that is probably most useful as a control
signal, particularly for filters. The conversion scheme is
shown in Table III.

FREQUENCY SHIFTING IMPLICATIONS

The possibility that Walsh coefficients can be manipu-
lated to shift the frequency of an input sine wave is implied
by the phase dependence of the Walsh coefficients of a sine
wave. If the phase angle between a sine wave and Wal( 1) is
6, then the Cl coefficient is calculated as

Ct(fl) = f smU - 0) Wai 0 ,* )< fc

.nx cos & - cos* sin 0) Wai (1, x)dx

= cosr>d(0).

In the same manner,C2 (0) =C, (0) sin 0, C5 (9) = C3 (0)
cos e, Ce (6) = C5 (0) (-sin 0), etc. Thus if the coefficients
are made to vary as either sines or cosines, the phase will be
shifted, and this can produce a frequency shift. In the HT
network the coefficients would be manipulated by applying
the outputs of a quadrature oscillator to the multipliers
controlling the coefficients. This frequency shift is illus-
trated in Fig. 9.
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RECYCLING THE OUTPUT

If an inverter is placed after (he output, and this is fed
back to the input, the HT network will oscillate. This can be
useful when the coefficients are controlled by mul t ip l iers
and envelopes, as the oscillation loop is broken when the
envelopes are al I zero. However, the output is not necessar-
ily controlled by the envelopes in this case, as a loop gain of
one must be obtained for any output at all. Thus amplitude
of the attack is controlled mainly by the natural buildup of
oscillation. On the other hand, decay can be controlled to
some extent with the envelopes.

CONCLUDING REMARKS

As of this wri t ing, the HT technique has been shown to

sequences of sounds . Severa l new composit ional
techniques seem possible with the HT. Further experimen-
tation should lead to additional useful techniques.
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