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The complete orthonormal set of Walsh functions is used to generate periodic wave-
forms and envelope shapes for an additive symthesis electronic muwsic device. The
‘Walsh functicns, easily produced by digital ciseuitry, can be used to generate banks
of harmonic and nonharmonic waveforms, A second Walkh function generator forms
the basis of a digital envelope controller which can produce a wide variety of simul-

taneous envelope shapes,

INTRODUCTIOM: Although investigated by I 1.
Walsh in 1923 [1], the set of functions which now bear
his name have not found wide application until recent
vears [2], [3], [4). Walsh waveforms are rectangular, tak-
ing on only the values =1 over a basic interval, after
which the sequence may be repeated to form a set of
periodic functions. Walsh functions form a complete
orthonormal set and, therefore, can be emploved in wave-
form synthesis schemes analogous to the Fourier syn-
thesis methods which employ sines and cosines. The =1
levels are easily converted to the zero and one levels of
digital logic, and numerous schemes for the generation
of Walsh functions by digital means have been suggested
[51. [6].

PROPERTIES AND GENERATION METHODS

Walsh functions indexed from zero to 2» — 1 are de-
fined on @ basic interval, such as zero to one, which is
subdivided into 2™ equal segments, where m is an in-
teger. The functions indexed by 2'—1, where 1 is an in-
teger less than or equal to m, are known s Rademacher
functions, and are actually a set of square waves in
octaves, starting at + 1, and repeating a total of 20—
times in the basic interval. The remaining Walsh func-
tions can be generated from the recursion relation:

Wal(h)-Wal(k) = Wal(ha k)

where the notation Wal{j) denotes the Walsh function
of index j, the symbol (@) represents modulo-2 addi-
ton (0 @ 0=00g1=11g0=1ad
1 & 1 = 0), and b and k are represented by their
binary equivalents. After converting the Walsh func-
tions to the zero and one logic levels, the indicated mul-
tiplication (+} in the recursion relation reduces to modu-
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o2 addition [5] (the logical “ExcLusive-or™ function),
suggesting a hardware generation scheme as indicated in
Fig. 1 for m = 3, Wal{0) is a constant function. Ex-
tension of the generation scheme for larger &t is siraight-
forward.

COMPUTER GENERATION OF HIGHER ORDERS

Generation of Walsh functions of higher index (also
mfern-l! lu as higher “sequency” as defmed below) is
d by a P program l the al-

gorithm:

Step 1@ Generation of the square waves in positions

2—1;

Repeatfork = 1,2,3,....m
Define L = 2m—#&
Repeatforr=1,2,3,...2
p=rL—1/2m
If (Highest integar in p)/2 = (An integer)
Then #(2k—1,r) =1
Else W(Zr=1,n =10

ia

Step 2: Recursion Relation Implementation

Repeat for k= 1,2,3,...m—1
Define § = 2641 = 26— |

R
‘ Repeat for ¢
E
&

£
[ W(ZE+1 —q—l ;} - [.fw:;-fx—m:-.- Wig,r)
= () otherwise

End
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Fig. 1. Digital hardware generation of first eight Walsh
fumetions,

A 2% by 2™ matrix notation, where the rows of the
matrix are Walsh functions in sequency erder, is useful.
A computer penerated Walsh funetion matrix (W) for
m =5 is shown in Fig. 2.

SAL, CAL, AND SEQUENCY

Examination of the matrix in Fig. 2 indicates that suc-
cessive 0dd and even indexed Walsh functions are shified
versions of the same sequence, and the notation Sal(i) =
Wal(2i ~ 1) and Cal(i) = Wal(2i) is often used in an-
alogy with the sine and cosine notation. The concept
of frequency yields to the terminology “sequency,” de-
fined a3 one-half the average number of Zero crossings
per second (zps) [7]. The ordering of the Walsh func-
tions in sequency order can be regarded in terms of a
time-normalized sequency, where the Walsh functions
are defined on an open inferval so that one does not
count the zero crossings at either end of the interval,
Corresponding Sal and Cal functions have the same zps,
and when regarded as periodic functions, they can be
thought of as differing only by a time delay.

WALSH-FOURIER SERIES AND DISCRETE
WALSH TRANSFORM

By analogy with the standard Fourier series employing
sines and cosines, a corresponding Walsh-Fourier series
can be defined [8]. Using a running variable x,
the series is:

=
Fiz) = E €, Wal(m,x)

il

1
where Cy ’='J Fix) Wal(nx) dx.

Since Wal(n,x) takes on only the values =1, it not only

breaks up the integral into several subintervals of inte-
gration, but also cffectively moves outside the integral
sign. For a Fourier series, it would be necessary to inte-
grate a sine or 4 cosine times F(x) to obtain the coeffi-
cients, but for the Walsh-Fourier series, it is only neces-
sary to be able to integrate Fix). While a smooth curve
will never be represented completely by o finite series
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of Walsh functions, & small amount of low-pass filtering
is usually sufficient to remove the sharp corners of the

i many Tectangular func-
tions such as sequences and periodically sampled analog
signals can be represented exactly by a finite series of
appropriately timed Walsh functions, Walsh-Fourier co-
efficients of such discrete sequences are obtainable as a
matrix product € = WX, where € is & 2™ dimensioned
row vector of Walsh coefficients, W is the 2= by 2
Walsh function matrix, as in Fig. 2 for m = 5, and X is
a 2% dimensioned column vector of discrete samples.
This is referred to as a Discrete Walsh Transform

FAST WALSH TRANSFORM

More economical use of computer time can be made
by employing the Fast Walsh Transform (FWT) tech-
nique, derived from the Hadamard Transform and the
Fast Fourier Transform (FFT) technigues [%1. The FWT
follows the basic Cooley-Tukey algorithm for the FFT
[10], but avoids operations with complex numbers. The
FWT transforms N time-sampled data peints inte N
discrete spectrum points. In the case where the N sam-
ples constitute a periodic waveform, or are the best ap-
proximation to & periodic waveform one could expect
from N samples, the spectral points are the Walsh-
Fourier coefficients that would be obtained from the
DWT. The reduction in the number of computer opera-
tions is from approximately N* for the DWT to approxi-
mately N log,N for the FWT, and the matrix of Walsh
functions need not be generated at all. A flow graph for
the Fast Hadamard Transform (FHT) as it fits inlo the
overall analysis and synthesis process is shown in Fig. 3
for the case of m = 3. The FHT yiclds the Walsh coeffi-
cients €, but in a scrambled order. The FWT is ob-
tained by simply rearranging the coefficients in sequency
order, the scrambled order being generated by the scheme
shown in Table 1.

The scrambled order gives the sequencies of the rows of
the Hadamard matrix. Both the flow graph and the or-
dering schemes are easily extended to larger order,

The FFT and FWT methods suggest possible realiza-
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Fig 2. First 32 Walsh functions generated by computer.
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of the waveforms after passing through a Jow-pass filter
are shown in Fig. 4b, Fig. 4c, and Fig. 4d respectively.
In addition to common waveforms, a wide variety of
complex periodic  waveforms can be casily obtained.
These, while interesting on an oscilloscope face, are no
more interesting to the ear than the sawtooth: for ex-
ample, all periodic waveforms are approximately equally
boring to the ear. Low-pass filtering by fixed filters can
be used to smooth the synthesized waveforms over mod-
erate ranges of frequency, Tunahble or voltage-controlled
filters {VCF's) can also be employed.

WALSH HARMONIC BANK

Although the periodic waveforms are not usable di-
rectly for music synthesis (unless used with vellage-
controlled amplifiers (VCA's), VOF's, cte., in a typical
subtractive synthesis system), the Walsh functions can
be used as a source of separated (albeit Walsh) har-
monics for additive synthesis. The question of the audi-
hility of the relative phase of the Walsh harmonic com-
ponents of a composite waveform arises here; and. in
general, one must allow for a different timbre depending
on whether a Sal or corresponding Cal of the same se-
quency is employed. This is connected with the problem
of phase [11], and while there are cases where

Fig. 3. Overall analysis-synthesis process showing role of
Hldjamal'ﬂ transform. s B R

tions of polyphonic instruments, filters, and timbre con-
trollers by feeding or controlling spectral information
1o the inverse transforms by means of some device such
a5 a kevhoard. The outputs of the device could be time-
ordered for an audible owtput, and the input spectral
points, roughly representing pitch information, could be
enveloped “in" at the inputs.

APPLICATIONS
Wavet :

Using the 32 by 32 matrix of Walsh functions, as de-
fined by Fig. 2, Walsh coefficients can be generated by
DWT or FWT computer methods, Coefficients for some
common waveforms are shown in Fig. 4a. Simple opera-
tional amplifier summation techniques are used to sum
the appropriate Walsh functions in proportion 1o their
cocfficients. Although sequency is not correlated with
subjective musical pitch, the composite waveforms have
a pitch determined by the busic interval of the Walsh
functions, unless the composite waveform is specifically
made to repeat more than once in the basic interval,
Oscilloscope traces of the Walsh penerated sine, saw-
tooth, and triangle approximations along with the trace

the phase difference is not important to tene color, it is
relatively ensy fo devise cases where there B a great
difference that can be heard when played into an open
room as well as over headphones. In cases where it is
possible 1o use less than the full set of 32 Walsh func-
tions, the number of EXCLUSIVE-OR gates needed for the
generator can be reduced (from 26 o 18) if only the
Sal functions are required, and further reduced (from
18 to 11} if only one function for each sequency (zps)
is to be used.

GENERATION OF ENVELOPES

Walsh functions can be used to pgencrate envelope
shapes as well as fully periodic waveforms. In this case,
a suitable periodic waveform is generated over the basic
interval, and can be further altered by a predetermined
delay point. An envelope control circuit advances a
Walsh function generator from the first segment 0 a
predetermined stopping point, defining the attack and
the sustain respectively, A restart of the generator and
advance to the last segment ﬂcﬁng the decay. Examples
of two such envelopes for the m = 5 set of Walksh func-
tions (32 segments) are shown in Fig. 5 for o delay ot
segment 16.

THE BLOCK PULSES P(16) and P(32)
In the generation of envelopes, the segment at 16
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:I;‘E.”?f "” The envelope controller is shown in Fig. The
(top) @ tack portion of the envelope is tr el by the coinci-
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Fig. 6. Overall experimental systes.

dence of & key down and a discrete change of control
voltage. Thus, an attack envelope is initiated whenever
the VCO changes frequency discretely, and hence a new
envelope is initiated whenever a different key on the
keyboard is depressed regardless of whether or not the
first key is lifted completely first. Initiation of attack
consists of forcing the generator from the 32 state to
the first state, Upon completion of the attack, the gen-
erator is stopped by P(16), and remains there until final
removal of the key-down signal which forces the gener-
ator into state 17, where it is advanced by a separate
decay clock to state 32, It is also fairly easy to alter the
controller logic so that other modes of envelope timing
can be obtained.

THE ENVELOPE SUMMER

The envelope summer is shown in Fig. 8 By adding
and subtracting summed coeflicients and complete en-
velopes, seven basic envelopes can be obtained from the
envelopes of Fig. § plus P(16). The envelopes may be
low-passed 1o remove the sharp steps. Proper use of these
envelopes gives some control over both eavelope and

Fig. 7. Envelope controller circuit showing
trolling sipnals methad of nhmumgmc 15 und P(!ZJ
from the Walsh functions, The W
the envelope summer are removed from the duodﬁ'.

644

timbre at the keyboard without touching separate con-
trols. For example, using the trapezoidal envelope, a
long attack and sustain can be obtained by always hav-
ing at least one key pressed down; sharp tapping of the
keys gives rapid transition to the decay state for a piano-
like decay. By putting one set of Walsh harmonics under
attack and sustain envelopes, and a second set under
decay envelopes, the same two playing techniques will
result in different voices as well as different envelopes.

NONHARMONIC TONES

The Walsh harmonic bank as discussed above pro-
duces only harmonic (in the Fourier sense) overtones,
due to the fact that all the Walsh functions of the bank
have the same basic interval. The axpmmmts] !‘fymem
has available several additional p for

Wi} 1%k ] = am
Wy e

Fig- 8. Practical en summer, Seven basic envelopes
are available, More comqu:x envelopes Tequire more of the
‘Walsh functions.

timbre by introd tones.

effects (AM, FM and balanced) can be employed in the
conventional manner to produce sidebands, thus altering
timbre. Also, a second Walsh harmonic bank can be
driven through a symmetric divide-by-n frequency di-
vider (where n is not & power of two), or by a separate
but tracking VCO. In the former case, the divide-by-n
may be driven by any of the square-wave Walsh func-
tions from the primary bank, and the resulting nonhar-
monics analyzed in terms of the frequency ratios of the
square waves involved. Alternatively, the secondary bank
can be driven from any of the more irregular Walsh
functions. In this case, the outputs of the secondary
bank will not be Walsh functions but may still be useful
musically. This latter case is best analyzed in terms of a
sequency triggering rate rather than through considera-
tion of frequency ratios,

SEQUENCY TRIGGERING RATE

Suppose for example that Wal(31) is actually a square
wave of frequency 1600 Hr (sequency 1600 zps).
Wal{30) will then have a sequency of 1500 zps. If thess
two Walsh functions trigger identical Walsh function
generators as indicated in Fig. 9, and these generators
trigger on voltage transitions in one direction only, then
the average triggering rafe is just the sequency. The m =
5 Walsh generator involves divide-by-16 circuitry, the
divide-by-16 oceurring at the Wal(l) output. The se-
quency of the Wal(1) output of the first generator is
therefore 100 zps, while the sequency of the Wal(l)
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output of the secondary penerator is about 93.8 zps. The
divide-by-16 has in the mean time reduced the irregu-
larity occuring in the Wal(30) waveform to a point
'flwm it appears as an error of one part in 16 in every
sixteenth half-cycle, which may not be audible [12]. This
is mearly a symmetric square wave of frequency 938
Hz, so the interval between the Wal(l) outputs of the
two generators is nearly a just semitone. Analysis of the
higher sequency outpuls of the secondary generator be-
comes increasingly difficult as irregularities ase not re-
duced by high integer division. It can he observed that
single unit changes in the sequency triggering rate pro-
duce Jarge changes in tone color,

120 En Square v

Fig. 5. Sequency irigpering rate example showing the ap-
proximation of a just semitone.

The sequency drive method can be used. followed by
high-integer division circuits to give relatively pure square
waves [13] with Irequencies proportional to the product
of the driving sequency and the output sequency. Var-
ious scales and intervals can be investigated by this
means. However. the primary interest in the sequency
triggering rate is for the nonharmoenic effects achieved.

SUMMARY

The use of Walsh functions permits an inexpensive
realization of an additive synthesis system through digi-
tal-eavelope control and digital harmonics. A wide va-
riety of fixed cn\'eloves can be obtained with minimal

circuitry. G of both ic and
nonharmonic lones using Walsh function  generators
serves to provide a bank of available waveforms for the
additive synthesis process. Careful selection and setting
of amplitudes results in sounds with a relatively strong
sense of pitch, but the interval of overall periodicity may
be greatly extended, and this, along with the time de-
pendent harmonic content of the transients is more de-
manding on the listener’s ear, and hence more demand-
ing of the listener's attention,
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