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The complete orthonormal sel of Walsh functions is used to generate periodic \
forms and envelope shapes for an additive synthesis electronic music device.
Walsh functions, cus i ly produced In JiuiUil circuitry, can be used to generate \
of harmonic and nonhannonJC waveforms. A second Walsh function generator f
the basis of a digital envelope controller which can produce a wide variety of si
taneous envelope shapes.

INTRODUCTION: Although investigated by J. L.
Walsh in 1923 [1], Ihe set of functions which now bear
his name have not found wide application until recent
years [2], [3], [4]. Walsh waveforms are rectangular, tak-
ing on only the values ±1 over a basic interval, after
which the .sequence may be repeated to form a set of
periodic functions. Walsh functions form a complete
orthonormal set and, therefore, can be employed in wave-
form synthesis schemes analogous to the Fourier syn-
thesis methods which employ sines and cosines. The ±1
levels are easily converted to the zero and one levels of
digital logic, and numerous schemes for the generation
of Walsh functions by digital means have been huasiMed
[51, [6].

lo-2 addition [5] (the logical "EXCLUSIVE-OR" function),
sdLjLtcsimg a hardware generation scheme as indicated in
Fig. 1 for m = 3. Wo/(0) is a constant function. Ex-
tension of the generation scheme for larger m is straight-
forward.

COMPUTER GENERATION OF HIGHER ORDERS

Generation of Walsh functions of higher index (also
referred to as higher "sequency" as defined below) is
facilitated by a computer program employing the al-
gorithm:

Step 1: Generation of the squi in positions

PROPERTIES AND GENERATION METHODS

Walsh functions indexed from zero to 2m - I are de-
fined on a basic interval, such as zero to one, which is
subdivided into 2'" equal segments, where m is an in-
teger. The functions indexed by 2'— 1, where f is an in-
teger less than or equal to m, are known as Rademacher
functions, and are actually a set of square waves in
octaves, starting at + 1, and repeating a total of 2'-1

times in the basic interval. The remaining Walsh func-

Repeat for k = 1, 2, 3 m
Define!, = 2m~k

Repeat for r= 1 , 2 , 3 , . . . 2 < «
P = r/L-I/>
If (Highest integer in p)/2 = (An integer*

ThenW(2*-l,r) = 1
Else W ( 2 * - l , r ) = 0

H-WO-WdK*) = Wal(h®k) Step 2: Recursion Relation Implementatio

where the notation Wal(/) denotes the Walsh fu
of index /, the symbol ( ® ) represents modulo-2
tion (0 0 0 = 0, 0 ® 1 = 1, 1 $ 0 = 1,
1 ffi 1 = 0), and h and k arc represented by
binary equivalents. After converting the Walsh
tions to the zero and one logic levels, the indicated
tiplication (•) in the recursion relation reduces to
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ration of first eight Walsh

A 2"* by 2™ matrix notation, where the rows of the
matrix are Walsh functions in sequency order, is useful.
A computer generated Walsh function matrix (W) for
m — 5 is shown in Fig. 2.

SAL, CAL, AND SEQUENCY

Examination of the matrix in Fig. 2 indicates that suc-
cessive odd and even indexed Walsh functions are shifted
versions of the same sequence, and the notation Sal(i) —
Wal(2i - 1) and Cold) = Wal(2i) is often used in an-
alogy with the sine and cosine notation. The concept
of frequency yields to the terminology "sequency," de-
fined as one-half the average number of zero crossings
per second (zps) [7]. The ordering of the Walsh func-
tions in sequency order can be regarded in terms of a
time-normalized sequency, where the Walsh functions
are defined on an open interval so that one does not
count the zero crossings at either end of the interval.
Corresponding Sal and Cal functions have the same zps,
and when regarded as periodic functions, they can be
thought of as differing only by a time delay.

WALSH-FOURIER SERIES AND DISCRETE
WALSH TRANSFORM

By analogy with the standard Fourier series employing
sines and cosines, a corresponding Walsh-Fourier series
can be denned [8], Using a running variable x,
the series is:

of Walsh functions, a small amount of low-pass filtering
is usually sufficient to remove the sharp comers of the
composite waveform. Moreover, many rectangular func-
tions such as sequences and periodically sampled analog
signals can be represented exactly fay a finite series of
appropriately timed Walsh functions. Walsh-Fourier co-
efficients of such discrete sequences are obtainable as a
matrix product C = WX, where C is a 2™ dimensioned
row vector of Walsh coefficients, W is the 2™ by 2™
Walsh function matrix, as in Fig. 2 for m = 5, and X is
a 2™ dimensioned column vector of discrete samples.
This is referred to as a Discrete Walsh Transform
(DWT).

FAST WALSH TRANSFORM

More economical use of computer time can be made
by employing the Fast Walsh Transform (FWT) tech-
nique, derived from the Hadamard Transform and the
Fast Fourier Transform (FFT) techniques [9]. The FWT
follows the basic Cooley-Tukey algorithm for the FFT
[10], but avoids operations with complex numbers. The
FWT transforms N time-sampled data points into N
discrete spectrum points. ID the case where the JV sam-
ples constitute a periodic waveform, or are the best ap-
proximation to a periodic waveform one could expect
from N samples, the spectral points are the Walsh-
Fourier coefficients that would be obtained from the
DWT. The reduction in the number of computer opera-
tions is from approximately N'2 for the DWT to approxi-
mately N log2/V for the FWT, and the matrix of Walsh
functions need not be generated at all. A flow graph for
the Fast Hadamard Transform (FHT) as it fits into the
overall analysis and synthesis process is shown in Fig. 3
for the case of m = 3. The FHT yields the Walsh coeffi-
cients Cn, but in a scrambled order. The FWT is ob-
tained by simply rearranging the coefficients in sequency
order, the scrambled order being generated by the scheme
shown in Table 1.
The scrambled order gives the sequencies of the rows of
the Hadamard matrix. Both the flow graph and the or-
dering schemes are easily extended to larger order.

The FFT and FWT methods suggest possible realiza-

whert ) Wal(n,x

Since Wa!(n,x) takes on only the values ±1, it not only
breaks up the integral into several subintervals of inte-
gration, but also effectively moves outside the integral
sign. For a Fourier series, it would be necessary to inte-
grate a sine or a cosine times F(x) to obtain the coeffi-
cients, but for the Walsh-Fourier series, it is only neces-
sary to be able to integrate F(x) . While a smooth curve
will never be represented completely by a finite series
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tions of polyphonic instruments, filters, and timbre con-
trollers by feeding or controlling spectral information
to the inverse transforms by means of some device such
as a keyboard. The outputs of the device could be lime-
ordered for an audible output, and the input spectral
points, roughly representing piich information, could be
enveloped "in" at the inputs.

APPLICATIONS

Periodic Waveform Generation

Using the 32 by 32 matrix of Walsh functions, as de-
fined by Fig. 2, Walsh coefficients can be generated by
DWT or FWT computer methods. Coefficients for some
common waveforms are shown in Fig. 4a. Simple opera-
tional amplifier summation techniques are used to sum
Ihe appropriate Walsh functions in proportion to their
coei l ic lents . Although sequency is not correlated with
subjective musical pitch, the composite waveforms have
a pitch determined by the basic interval of the Walsh
functions, unless the composite waveform is specifically
made to repeat more than once in the basic interval.
Oscilloscope traces of the Walsh generated sine, saw-
tooth, and triangle approximations along with the trace

of Ihe waveforms after passing through a low-pass filter
are shown in Fig. 4b, Fig. 4c, and Fig. 4d respectively.

complex periodic waveforms can be easily obtained.
These, while interesting on an oscilloscope face, are no
more interesting to the ear than the sawtooth; for ex-
ample, all periodic waveforms are approximately equally
boring to the ear. Low-pass filtering by fixed filters can
be used to smooth the synthesized waveforms over mod-
crate ranges of frequency. Tunable or voltage-controlled
filters (VCF's) can also be employed.

WALSH HARMONIC BANK

Although the periodic waveforms are not usable di-
rectly for music synthesis (unless used with voltage-
controlled amplifiers (VGA's), VCF's, etc., in a typical
subtraclive synthesis system), the Walsh functions can
be used as a source of separated (albeit Walsh) har-
monics for additive synthesis. The question of the audi-
bility of the relative phase of the Walsh harmonic com-
ponents of a composite waveform arises here; and, in
genera!, one must allow for a different timbre depending
on whether a Sal or corresponding Cal of the same se-
quency is employed. This is connected with the problem
of monaural phase [11], and while there are cases where
the phase difference is not important to tone color, it is
relatively easy to devise cases where there is a great
difference that can be heard when played into an open
room as well as over headphones. In cases where it is
possible to use less than the full set of 32 Walsh func-
tions, the number of EXCLUSIVE-OR gates needed for the
generator can be reduced (from 26 to 18) if only the
Sal functions are required, and further reduced (from
18 to 11) if only one function for each sequency (zps)
is to be used.

GENERATION OF ENVELOPES

Walsh functions can be used to generate envelope
shapes as well as fully periodic waveforms. In this case,
a suitable periodic waveform is generated over the basic
interval, and can be further altered by a predetermined
delay poinl lope Llit

Walsh function generator from the first segment to a
predetermined stopping point, defining the attack and
the sustain respectively. A restart of the generator and
advance to the last segment defines the decay. Examples
of two such envelopes for the m = 5 set of Walsh func-
tions (32 segments) are shown in Fig. 5 for a delay at
segment 16.

THE BLOCK PULSES P{16) and P(32)

In the generation of envelopes, the segment at 16
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m"c". plays an important role. For example, if an upramp
=1 o-5°° reaches its peak at 15 and falls to zero at 16, it is an
-5 -°-J5o attack only envelope. However, such a ramp requires the
3ij -0-125 entire available set of 32 Walsh functions and hence.
%9 -o.o« formidable summing problems, and would therefore he

inferior to a point-by-point generation method. The ramp
peaking at 16 on the other hand requires only nine of
the first 32 Walsh functions, but is an attack and sus-
tain envelope. By separating out a block pulse at segment
16, denoted P(16), and using this as a blanking pulse,
the attack and sustain envelope may be converted to
attack only. Similarly, the easily generated downramp
from segment 17 to segment 32 (decay only) can be
made sustain and decay by the addition of f (16). P(16)
is also needed as the signal-to-end attack, while the block
pulse at segment 32, denoted /"(32), is the signal-to-end
decay and go to a complete rest condition. Furthermore,
P(16) represents the entire sustain time, and is useful as
a gate for additional effects on the signal during sustain,
which otherwise would be a simple periodic waveform
unacceptable for long sustain time. While P{16) and
P(32) could be obtained as a Walsh-Fourier series, this
would require summation of all of the first 32 Walsh
functions. Fortunately, they are easily obtained from the
Walsh functions using logic gates as indicated in Fig. 7.

OVERALL EXPERIMENTAL SYSTEM

The overall experimental system is showr in Fig. 6.

irssv.nvc uop) ami with low-pass
iieniinLed N>v.tuMh itop) and

ml. d. Walsh aenerakJ t r u n L - l o
ing (bottom).

A voltage-controlled oscillator (VCO) is run four oc-
taves above its normal range. Envelope control signals
are obtained in conjunction with a iample-and-hold
circuit, which is needed to store the frequency informa-
tion during decay, i.e., after a key is lifted and the con-
trol voltage would normally disappear. Selected Walsh

rnonic bank, which is being driven by the VCO, and
these are patched into a bank of VGA's. The VGA's are
controlled by various envelopes, and the final set of
amplitude shaped harmonics is mixed. The output of
the mixer is then subjected to low-pass or other desired
filtering by means of the VCF which can track the VCO
by means of the same control voltage. The system pro-
vides time dependent harmonic changes similar to those
obtained by VCF's using subtractive synthesis.

THE ENVELOPE CONTROLLER

The envelope com
ack portion of the e

Her is shown in Fig. 7. The at-
/elope is triggered by the coinci-
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Fig. 6. Overall experimental

dence of a key down and a discrete change of control
voltage. Thus, an attack envelope is initiated whenever
the VCO changes frequency discretely, and hence a new
envelope is initiated whenever a different key on the
keyboard is depressed regardless of whether or not the
first key is lifted completely first. Initiation of attack
consists of forcing the generator from the 32 state to
the first state. Upon completion of the attack, the gen-
erator is stopped by P(16), and remains there until final
removal of the key-down signal which forces the gener-
ator into state 17, where it is advanced by a separate
decay clock to state 32. It is also fairly easy to alter the
controller logic so that other modes of envelope timing
can be obtained.

THE ENVELOPE SUMMER

The envelope summer is shown in Fig. 8. By adding
and subtracting summed coefficients and complete en-
velopes, seven basic envelopes can be obtained from the
envelopes of Fig. 5 plus P(\6). The envelopes may be
low-passed to remove the sharp steps. Proper use of these
envelopes gives some control over both envelope and

Fig. 7. Envelope controller circuit showing source
trolling signals and method of obtaining P(16J and P(32)
from the Walsh functions. The Vmbli funeflcffls needed for

timbre at the keyboard without touching separate con-
trols. For example, using the trapezoidal envelope, a
long attack and sustain can be obtained by always hav-
ing at least one key pressed down; sharp tapping of the
keys gives rapid transition to the decay state for a piano-
like decay. By putting one set of Walsh harmonics under
attack and sustain envelopes, and a second set under
decay envelopes, the same two playing techniques will
result in different voices as well as different envelopes.

NONHARMONIC TONES

The Walsh harmonic bank as discussed above pro-
duces only harmonic (in the Fourier sensej overtones,
due to the fact that all the Walsh functions of the bank
have the same basic interval. The experimental system
has available several additional provisions for controlling

Fig. 8. Practical envelope summer. Sever
are available. More complex envelopes require more of the
Walsh functions.

linibre by introducing nonharmonic tones. Modulation
effects (AM, FM and balanced) can be employed in the
conventional manner to produce sidebands, thus altering
timbre. Also, a second Walsh harmonic bank can be
driven through a symmetric divide-by-rc frequency di-
vider (where n is not a power of two), or by a separate
but tracking VCO. In the former case, the divide-by-n
may be driven by any of the square-wave Walsh func-
tions from the primary bank, and the resulting nonhar-
monics analyzed in terms of the frequency ratios of the
square waves involved. Alternatively, the secondary bank
can be driven from any of the more irregular Walsh
functions. In this case, the outputs of the secondary
bank will not be Walsh functions but may still be useful
musically. This latter case is best analyzed in terms of a.
sequency triggering rate rather than through considera-
tion of frequency ratios.

SEQUENCY TRIGGERING RATE

Suppose for example that Wal(3\) is actually a square
wave of frequency 1600 Hz {sequency 1600 zps).
Wa!(30) will then have a sequency of 1500 zps. If these
two Walsh functions trigger identical Walsh function
generators as indicated in Fig. 9, and these generators
trigger on voltage transitions in one direction only, then
the average triggering rate is just the sequency. The m =
5 Walsh generator involves divide-by-16 circuitry, the
divide-by-16 occurring at the Wal(l) output. The se-
quency of the Wai (I) output of the first generator is
therefore 100 zps, while the sequency of the Wal(l)
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output of the secondary generator is about 93.8 zps. The
divide-by-16 has in the mean time reduced the irregu-
larity occuring in the Wal(3Q) waveform to a point
where it appears as an error of one part in 16 in every
sixteenth half-cycle, which may not be audible [12J. This
is nearly a symmetric square wave of frequency 93.8
Hz, so the interval between the Wal(i) outputs of the
two generators is nearly a just semitone. Analysis of the
higher sequency outputs of the secondary generator he-
comes increasingly difficult as irregularities are not re-
duced by high integer division. It can be observed that
single unit changes in the sequency triggering rate pro-
duce large changes in tone color.

proximalion o
the ap-

The sequency drive method can be used, followed by
high-integer division circuits to give relatively pure square
waves [13] with frequencies proportional to the product
of the driving sequency and the output sequency. Var-
ious scales and intervals can be investigated by this
means. However, the primary interest in the sequency
triggering rate is for the nonharmonic effects achieved.

SUMMARY

The use of Walsh functions permits an inexpensive
reali/ation of an additive synthesis system through digi-
tal-envelope control and digital harmonics. A wide va-
riety of fixed envelopes can be obtained with minimal
summation circuitry. Generation of both harmonic and
nonharmonic tones using Walsh function generators
serves to provide a bank of available waveforms for the
additive synthesis process. Careful selection and setting
of amplitudes results in sounds with a relatively strong
sense of pitch, but the interval of overall periodicity may
be greatly extended, and this, along with the time de-
pendent harmonic content of the transients is more de-

ing of the listener';
md hei md-
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