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In the past few Perspectives we have been looking at the physics of some musical
instruments. These have been instruments which produce a fairly well-defined pitch.
Even in such cases, we found that the available pitches and natural modes of the
instrument were interrelated in a complex way. It was found in particular that the
present designs of instruments are the result of much craftsmanship, and of relatively
little science.

Percussion instruments are of still a different nature. In fact, it is a bit
difficult to define the term "percussive instrument" very exactly. In general, it
should be something we beat on or strike in some manner to produce a sound. This
sound may or may not have a pitch, and if it does have a pitch, the pitch may be
strong or weak, or even ambiguous. A bass drum for example has very little or
nothing at all that we might call pitch. Some orchestral chimes, on the other hand,
have very well defined pitches and we can play a melody on them as easily as on some
wind or string instrument. It should perhaps be noted, that some writers even would
include the piano as a percussive instrument, on the grounds that the strings are
struck with felt hammers.

This view of the piano as a percussive instrument is strengthened a bit if we
look at another view of a percussive instrument as one which produces a sound that is
not sustained, but rather which decays from the moment of excitation, in an exponential-
like manner if possible. This somewhat vague definition is in line with our idea of
a "convolution type" of instrument (see Perspectives No. 131A) if we assume that the
excitation is impulsive. [In simpler terms, you strike it, it does its thing, and the
energy damps away.]

Continuing this idea a bit further, we can consider the resonant system associated
with a percussive instrument to be multi-mode. When we strike it, we excite a number
of modes in general. The exact modes excited, and their relative response strengths,
may well be a function of the striking method. In general, those modes which are
pitched will have frequencies that are not related to each other in a simple way. In
particular, they need not be integer multiples (harmonics). The pitches of the modes
may have different decay rates, and they may be strong or weak. Percussive sounds
may also contain a good deal or broadband noise.

PERCUSSION INSTRUMENT STRUCTURES

Since nearly anything can be (and frequently is) a percussion instrument, we
have quite a large number of structures that can be considered. Two approaches to
their analysis are common. The first is to simply take measurements on the actual
instruments and try to make sense out of them. The second is to look at the structure
in terms of some idealized simpler structure that can be handled theoretically. (In
general, the actual instrument structures are of too complex a shape, or the properties
of the materials are too poorly known, to allow an exact analysis). Thus, we might
look at a marimba bar as an ideal bar-like structure of such and such length, thickness,
width, and material. We? ran t-hen aftQn calculate ita characteristic modes of
vibration. We can see if the actual frequencies of vibration correspond to any of the
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theoretical ones. We can see If different theoretical modes can be excited in practice,
particularly by knowing the vibration pattern. Perhaps of most interest, we can admire
the craftsmanship. For example, why is the marimba bar hollowed out (undercut in an arch)
near the center. Is it just for decoration? No, actually it raises the second partial
from a theoretical 2.76 times the fundamental to 4.00 times the fundamental. Was this
figured out theoretically years ago? That's very unlikely of course - it was a matter
of trial and error, the instrument maker's art.

The idea of craftsmanchip goes even further when we consider such percussive
instruments as large church bells. It is one thing to consider a wooden bar which you
could work in your hands, shaving a bit here and a bit there until it has partials that
are harmonic. It is quite another thing to think about a large church bell, of very
complex shape, which is difficult just to move, and which must have been cast from molten
metal. This is something the average person, even the person who is handy, can not even
think about doing. That there is any success with such imposing structures is something
of a wonder which must be attributed to the number of years that have gone into the
production of bells. Perhaps in consequence, large bells are less precise in pitch and
each one has some order of individual characteristic sound. Most have a pitch that is
reasonably close to some fundamental frequency, and then perhaps two partials that are
fairly close to harmonics of this fundamental. And then there are also partials that
just don't fit in, are totally out of place from a harmonic viewpoint, and seem to be
unavoidable as well. Perhaps these are responsible for the somewhat "uneasy" sound of
the bells. We are accustomed to having bells somewhat out of tune and somewhat
unpleasant to listen to, relatively speaking. We are not surprised to find that the
individual sound of a bell is "etched" into our memory, even after some years of not
hearing it. In fact, we may find the sound of a well matched set of bells to be very
strange, and very intriguing.

Still other percussion instruments involve not relatively solid structures such as
those of metal or wood, but rather flexible materials, typically menbranes supported in
part by volumes of air. In particular, the drums, which everyone would group into the
percussion group. Again, we find a large variety even in the drums, most of which
involve a stretched circular membrane. We have pitched instruments (the timpani) and
unpitched ones (such as the snare drum, where the snares actually add unpitched noise).
The kettledrum (one of the drums of a timpani, timpani being always plural) is a very
interesting structure. On the one hand, we have in mind a theoretical structure, which
is the ideal membrane. This structure, a two dimensional analog to the vibrating string,
if you will, is well understood. The string vibrates (ideally) producing harmonic
overtones. The membrane is not so nice. Its vibrational pattern (see EN//131 for a
mathematical description) produces non-harmonic overtones. In fact, the partials of
the ideal membrane are at 1, 1.59, 2.14, 2.30, 2.65, 2.92, etc., a series which depends
on Bessel functions where sine waves were good enough in the case of the string. In
an actual kettledrum, the first mode (1 in series above) is not excited. In addition,
the kettle itself is a volume of air which in effect "stiffens" the membrane, as the
resistance of the air to compression is some sort of restoring force. As a result,
the partials are shifted upward, compared to the ideal membrane (and probably to a real
membrane without the kettle). As a result, the partials of a well-tuned kettledrum may
be placed at a fifth above the fundamental, at a sharp sixth, and at an octave. It is
thus the case that the craft of instrument making has again taken an inherently untuned
structure and made it tunable, vastly increasing its musical versatility.

In most all instruments, there is of course playing technique involved along with
the instrument design. A skillful player not only plays the right note at the right
time, but has additional control over his instrument, allowing it to do different and
often subtle things. This is also true of percussion instruments, although sometimes
things are not subtle. For example, there is a right way and a wrong way to strike a
kettledrum. In a chime, we may get different timbres depending on where we strike
the bars. There may also be wholly different ways of exciting the structures. The
"stroke rods" are excellent examples here. Here the metal rods are excited by stroking
them along their length with a rosined glove, thus exciting longitudinal modes (along
the length). The Bound is different and in a sense non-percussive, because it is, at
least for a time, continuously rather than impulsively excited.
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In the last Perspectives, we began a look at percussion instruments. We will
continue this here. Our interest in percussion instruments is first the same as we
would have in any other acoustical instruments, and then special because of the
increased use of percussive sounds in modern acoustic music. In addition, there is a
good deal of interest in the electronic synthesis of percussive sounds.

We have looked at the acoustics of air columns (EN//128A, EN//129A, EN//130A) and
at strings (EN#131A). In general, our results showed overtone relationships that were
harmonic. Yet air columns and strings are two of the relatively few acoustic systems
that come at all close to being ideal in this sense. Most percussion instruments
produce non-harmonic overtones, or produce harmonic overtones only as a consequence of
the craftsmanship and the art of their design. Here we will be looking at some of
the idealized model structures for percussive instruments. Our interest is first in
the mathematical predictions, and then in how well a real instrument structure follows
these predictions, or how a modification has brought about a response that is judged
superior for musical reasons.

EARS

One structure of interest is your basic "bar" which is often rectangular and made
of metal or wood. [Many results for "bars" also apply to what might also be called
"rods", having a circular cross section.] Thus our
bar will be in general a rectangular slab of metal
with a length L, a width W, and a thickness T, with
L>W>T, as suggested in Fig. 1. In addition to the
physical dimensions and properties of the bar itself,
it is important to know how the bar is mounted. We
could have a bar end free, it could be "supported"
or "hinged", or it might be clamped. A free end is
what it says, no support. A supported or hinged
bar suggests that an end point or some intermediate
point is to be fixed, but that bending is allowed at
that point. A clamped bar suggests that the end is
rigidly fixed, as it might be if set in cement. This
means that not only is its position fixed, but also
no bending is allowed at the end. If you wish, the
position of the bar is fixed at zero, and its first
derivative must also be zero. Examples of various
bar terminations are shown in Fig. 2. In a vibration,
it is the usual case that certain points are "nodes"
or points that do not move for a certain mode of
vibration. Thus support at a node point is always
a possibility, although it may restrict the excitation
of some other modes. This is also illustrated in
Fig- 2.
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With three different end conditions (clamped, hinged, and free) there are six
different combinations of end conditions, given the two ends of a bar. Nearly all
common percussive instruments are of the free-free mounting, being supported at nodes.
We would like however to review the consequences of all possible end conditions, and
to take note of the lowest frequency mode, and the relative positioning of overtones.
These are summarized below:
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'twisting" mode may also be present between fz and f3.
Here K is a constant depending only on the dimensions and material of the bar, so for
the same bar, K is the same. Thus we see, for example, that a clamped free bar has
the lowest frequency of all mountings, while a hinged-hinged bar has a frequency about
three times higher. This you can demonstrate for yourself with a plastic ruler. Hold
one end on the edge of a desk, and "flick" the free end. This is a clamp-free mount,
and you can almost see the individual vibrations. Now press one end against the edge
of the desk and hold the other end lightly in your fingers, with enough pressure to
secure the desk end. Flick this in the middle. The frequency is clearly higher, and
you may be able to convince yourself that three time higher is about right.

As for the overtones, there is more order here than may first appear. There is
a pattern to the Hinge-Hinge case of course. Not so obvious is the fact that in the
Free-Free (and Clamp-Clamp) case, the partials are quite well approximated by placing
the ratios of f^^^if^ as 32:52:72:92 This fact, known empirically to

E.F.F. Chladni (who died in 1827, the same year Beethoven died) can also be shown
mathematically. [It is sometimes stated that the ratios are 3.01122:52:72:92... It
would be quite remarkable if the first number 3.0112 were not a whole number and the
rest were exactly whole numbers. It is in fact the case that the numbers 5, 7, 9,...
etc. are not exactly whole numbers, but are so close, that it is not practical to
carry additional decimal places.] Another pattern appears in that in the Clamp-Free
case, the partials after the first are very close to being in the ratio of 32:52:72:
92 etc.

To look at some actual examples, the glockenspiel or the bell lyra is composed
of free-free bars with nodal supports of felt. We are mainly interested in the
fundamental frequency of these bars. Although the first overtone is at 2.756 times
the fundamental, it is of little importance as far as pitch goes (it is important to
timbre). The reason is that it damps rapidly and is very high in frequency anyway
(as the instruments themselves are of high frequency). In part, the rapid damping is
due to the felt supports at the nodes of the fundamental mode (0.22 and 0.78 of the
total length), which are not the nodes of other modes. Another remarkable bar is
the "orchestral chime" of "tubular bell". In this case the "bar" is actually a pipe,
but the math is the same. This is a free-free bar, and has overtones going as 32:52

:72:92:112:132:... which is 9:25:49:81:121:169:..., highly non-harmonic, except as
overtones of 1, which is very low in pitch. Instead what is heard is a pitch of
about 41. This is apparently generated by the overtones 81, 121, and 169, which the
ear apparently accepts as the second, third, and fourth harmonic of 41! Other
interesting bars are those of the xylaphone and the marimba, also free-free bars,
with nodal mountings. Unlike the glockenspiel, the overtones of these are fairly low
in frequency and would sound non-harmonic. Thus these bars are partly hollowed out
or undercut near the middle, raising the 2.76 overtone to 3 for the xylaphone, and
to 4 for the marimba.

In addition to the transversal modes of vibration of the bars considered above,
longitudional and torsional modes can be excited. Thpsp are interesting for their
higher frequencies, and in particular, because the overtones are harmonics, and thus
join the string and the air column as somewhat unique structures.
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Here we will be continuing our discussion of percussion instruments. One of the
general features of instrument analysis that will appear here, as we take up the
discussion of drums, is that of modal patterns. We know how to solve mathematically
for the vibrational modes of various simple structures. This solution tells us rather
exactly where nodal lines occur, what the characteristic frequencies are, and what the
rates of decay are. In an actual instrument, we expect correctly that certain
non-ideal properties will shift these results at least a bit. This is useful, but
perhaps equally useful is the fact that even some quite non-ideal structures will still
exhibit modes that can be recognized as corresponding to ideal modes of ideal structures.
A cymbal for example (or a garbage can lid, for that matter) is distinctly different
from a flat circular plate. Yet we can look for at least some of the same modes to
appear in both. Certainly they will have different frequencies from an ideal circular
plate, and the exact dimensions of the nodal boundaries will be different, but the
general pattern may still be there. Thus we might look for a (0,1) mode of vibration
in a grabage can lid, find its frequency, its strength, and its nodes. If it's not
there, can we find why not? We fully expect to locate at least some of the low-order
modes. We also expect some quite different ones later on higher up. Yet it is a good
place to start. Consider the alternative of being asked to set up the proper equations
and solve for the vibrations of a cymbal or a garbage can lid from scratch. In a
similar manner, the vibrational modes of an ideal membrane are fundamental to a study
of drums.

DRUMS

The interested reader can find a discussion of the ideal membrane in the regular
newsletter (EN//131) . Here we want to just draw patterns for the more important modes,
and then to relate the results to drumheads. Fig. 1 below shows the patterns.

01

2.92 3.50 4.23 4.83 3.16 3.65

Fig. 1 Mode Numbers (above and to left) and relative frequencies (below) for
some modes of membrane. Mode numbers MN where M=number of nodal diameters and
N=number of nodal circles (outside mounting always counted).
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In the drawings, all the lines shown are nodal lines, lines where the membrane
does not move. This includes the outside rim, since the membrane is mounted here and
can not move. The modes are numbered by counting the number of nodal diameters and the
number of nodal circles, as indicated in the caption below the figure. The + and -
signs on various parts of the membrane indicate that these sections are always moving
in opposite directions relative to the plane of the membrane (of the paper). Note that
whenever a nodal boundary is crossed, the sign changes, indicating that the membrane
is stretched through the nodal line - it can not simply go down to the line and return
in the same direction.

The head of a drum is basically a real membrane (of calfskin, or better, of plastic
mylar) stretched uniformly across some circular enclosure, usually of a cylindrical
form. There may be more than one head, a second one being on the other end of the
cylinder, thus forming an enclosure of air which in some way couples the heads.
Various drums are commonly used, each for different purposes. Usually the distinction
between drum types has to do with the degree to which the vibration is pitched. It
should also be noted that the same drum head can respond in quite different ways
according to the position at which it is struck, the manner of striking, and the material
of the striking mallet (or hand, etc.).

As can be seen, the frequencies of the modes are not harmonically related at all.
In some drums, this is an advantage in that a relatively unpitched sound is desired.
In the kettledrum however, we are looking for a pitched sound. As we discussed briefly
in EN//133A, it is the function of the kettle of the drum to bring some of the higher
modes into tune. In fact, referring to Fig. 1, it is not the lowest frequency mode
(01) that is the pitch, but rather the (11) or "sloshing" mode. Because of the enclosed
air and the conventional manner of striking the kettledrum, the (01) mode is only weakly
excited. Also, the 21 mode, which in the ideal membrane is at a ratio of 1.34:1 with
the 11 mode, comes to a ratio of nearly 1.5:1, or a musical fifth above the main pitch.
At the same time, a third strong mode, the 31 or the 12 (depending on the source of the
data, and very probably the individual drum) comes in about 2:1, at the octave of the
main pitch. Thus we hear a pitch which is not the lowest frequency present, and is not
even the missing fundamental of the (2:3:4) ratio. Apparently it is the relative
strength of the 11 mode that dominates over other factors in pitch determination. The
tuned partials apparently contribute to the timbre more than to the pitch.

While the timpani are drums intended to give a definite pitch, it is the more
usual case that a drum is intended to give an indefinite pitch or no pitch at all.
Perhaps the most familiar type of drum of all is the so-called "snare drum." This
is a two headed drum which has snare wires touching the lower (unstruck) head, and as
this head starts to vibrate in response to the upper head, the wires produce additional
noise. Some small sized, heavy membrane type of drums may have a prominent fundamental
mode (01) if struck in the center, and yet the sound is still basically unpitched.
Drums of this type, of which the "bongo" may be typical, are still of relatively low
Q, as is evidenced by the relative ease with which their basic sound can be synthesized
(ringing of a medium-0 bandpass filter). The snare drum sound is probably familiar
to the reader as the military "parade drum" or "marching drum", and bongos are also
well known. Another of the more familiar drums is the "tom-tom" which is the one
used by the American Indians in most all old western movies. It is usually a two-headed
drum of indefinite pitch, but without snares.

Speaking of Indian drums, we call attention to the drums of the Indian Indians,
as this music has become popular in recent years. Such drums, of which the "tabla" is
familiar (in Ravi Shankar's groups, etc.), are of a fairly standard drum structure, but
they have a head that is loaded. This loading is a deposit of some gum-like substance
at the center of the head, and has the effect of bringing overtones to harmonic positions.
This is another example of art, craftsmanship, and tradition beating science to the
correct answer. Still another example is found in the "steel drums" of Trinidad. This
tradition cannot be hundreds of years old, as these drums are formed from hammered out
sections of 55 gallon oil drums. Yet the musicians using them have developed a tuned
drum in the time available.

An excellent source of information on all percussive instruments is Tom Rossing's
"Acoustics of Percussion Instruments" in Physics Teacher, Dec. 1976 and May 1977.
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